layoutlmv3-finetuned-full
Browse files
README.md
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: cc-by-nc-sa-4.0
|
4 |
+
base_model: microsoft/layoutlmv3-large
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
- accuracy
|
12 |
+
model-index:
|
13 |
+
- name: layoutlmv3-finetuned-full
|
14 |
+
results: []
|
15 |
+
---
|
16 |
+
|
17 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
18 |
+
should probably proofread and complete it, then remove this comment. -->
|
19 |
+
|
20 |
+
# layoutlmv3-finetuned-full
|
21 |
+
|
22 |
+
This model is a fine-tuned version of [microsoft/layoutlmv3-large](https://huggingface.co/microsoft/layoutlmv3-large) on an unknown dataset.
|
23 |
+
It achieves the following results on the evaluation set:
|
24 |
+
- Loss: 0.0613
|
25 |
+
- Precision: 0.9339
|
26 |
+
- Recall: 0.9517
|
27 |
+
- F1: 0.9427
|
28 |
+
- Accuracy: 0.9888
|
29 |
+
|
30 |
+
## Model description
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Intended uses & limitations
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training and evaluation data
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training procedure
|
43 |
+
|
44 |
+
### Training hyperparameters
|
45 |
+
|
46 |
+
The following hyperparameters were used during training:
|
47 |
+
- learning_rate: 1e-05
|
48 |
+
- train_batch_size: 2
|
49 |
+
- eval_batch_size: 2
|
50 |
+
- seed: 42
|
51 |
+
- gradient_accumulation_steps: 3
|
52 |
+
- total_train_batch_size: 6
|
53 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
54 |
+
- lr_scheduler_type: linear
|
55 |
+
- training_steps: 2500
|
56 |
+
- mixed_precision_training: Native AMP
|
57 |
+
|
58 |
+
### Training results
|
59 |
+
|
60 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
61 |
+
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
62 |
+
| No log | 0.5201 | 250 | 0.3041 | 0.4864 | 0.5643 | 0.5225 | 0.9219 |
|
63 |
+
| 0.4848 | 1.0416 | 500 | 0.1620 | 0.7495 | 0.8031 | 0.7753 | 0.9652 |
|
64 |
+
| 0.4848 | 1.5617 | 750 | 0.1195 | 0.8386 | 0.8662 | 0.8522 | 0.9745 |
|
65 |
+
| 0.1555 | 2.0832 | 1000 | 0.0996 | 0.8764 | 0.9025 | 0.8892 | 0.9790 |
|
66 |
+
| 0.1555 | 2.6033 | 1250 | 0.0765 | 0.8984 | 0.9285 | 0.9132 | 0.9828 |
|
67 |
+
| 0.0941 | 3.1248 | 1500 | 0.0662 | 0.9207 | 0.9387 | 0.9296 | 0.9864 |
|
68 |
+
| 0.0941 | 3.6449 | 1750 | 0.0658 | 0.9361 | 0.9452 | 0.9406 | 0.9875 |
|
69 |
+
| 0.0643 | 4.1664 | 2000 | 0.0630 | 0.9317 | 0.9508 | 0.9411 | 0.9886 |
|
70 |
+
| 0.0643 | 4.6865 | 2250 | 0.0589 | 0.9338 | 0.9503 | 0.9420 | 0.9892 |
|
71 |
+
| 0.0503 | 5.2080 | 2500 | 0.0613 | 0.9339 | 0.9517 | 0.9427 | 0.9888 |
|
72 |
+
|
73 |
+
|
74 |
+
### Framework versions
|
75 |
+
|
76 |
+
- Transformers 4.48.3
|
77 |
+
- Pytorch 2.5.1+cu124
|
78 |
+
- Datasets 3.3.2
|
79 |
+
- Tokenizers 0.21.0
|