armanbb commited on
Commit
c83d50e
·
verified ·
1 Parent(s): f70a2be

layoutlmv3-finetuned-full

Browse files
Files changed (1) hide show
  1. README.md +79 -0
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: cc-by-nc-sa-4.0
4
+ base_model: microsoft/layoutlmv3-large
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: layoutlmv3-finetuned-full
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ # layoutlmv3-finetuned-full
21
+
22
+ This model is a fine-tuned version of [microsoft/layoutlmv3-large](https://huggingface.co/microsoft/layoutlmv3-large) on an unknown dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Loss: 0.0613
25
+ - Precision: 0.9339
26
+ - Recall: 0.9517
27
+ - F1: 0.9427
28
+ - Accuracy: 0.9888
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 1e-05
48
+ - train_batch_size: 2
49
+ - eval_batch_size: 2
50
+ - seed: 42
51
+ - gradient_accumulation_steps: 3
52
+ - total_train_batch_size: 6
53
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
54
+ - lr_scheduler_type: linear
55
+ - training_steps: 2500
56
+ - mixed_precision_training: Native AMP
57
+
58
+ ### Training results
59
+
60
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
61
+ |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
62
+ | No log | 0.5201 | 250 | 0.3041 | 0.4864 | 0.5643 | 0.5225 | 0.9219 |
63
+ | 0.4848 | 1.0416 | 500 | 0.1620 | 0.7495 | 0.8031 | 0.7753 | 0.9652 |
64
+ | 0.4848 | 1.5617 | 750 | 0.1195 | 0.8386 | 0.8662 | 0.8522 | 0.9745 |
65
+ | 0.1555 | 2.0832 | 1000 | 0.0996 | 0.8764 | 0.9025 | 0.8892 | 0.9790 |
66
+ | 0.1555 | 2.6033 | 1250 | 0.0765 | 0.8984 | 0.9285 | 0.9132 | 0.9828 |
67
+ | 0.0941 | 3.1248 | 1500 | 0.0662 | 0.9207 | 0.9387 | 0.9296 | 0.9864 |
68
+ | 0.0941 | 3.6449 | 1750 | 0.0658 | 0.9361 | 0.9452 | 0.9406 | 0.9875 |
69
+ | 0.0643 | 4.1664 | 2000 | 0.0630 | 0.9317 | 0.9508 | 0.9411 | 0.9886 |
70
+ | 0.0643 | 4.6865 | 2250 | 0.0589 | 0.9338 | 0.9503 | 0.9420 | 0.9892 |
71
+ | 0.0503 | 5.2080 | 2500 | 0.0613 | 0.9339 | 0.9517 | 0.9427 | 0.9888 |
72
+
73
+
74
+ ### Framework versions
75
+
76
+ - Transformers 4.48.3
77
+ - Pytorch 2.5.1+cu124
78
+ - Datasets 3.3.2
79
+ - Tokenizers 0.21.0