layoutlmv3-finetuned-full

This model is a fine-tuned version of microsoft/layoutlmv3-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0613
  • Precision: 0.9339
  • Recall: 0.9517
  • F1: 0.9427
  • Accuracy: 0.9888

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 3
  • total_train_batch_size: 6
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • training_steps: 2500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.5201 250 0.3041 0.4864 0.5643 0.5225 0.9219
0.4848 1.0416 500 0.1620 0.7495 0.8031 0.7753 0.9652
0.4848 1.5617 750 0.1195 0.8386 0.8662 0.8522 0.9745
0.1555 2.0832 1000 0.0996 0.8764 0.9025 0.8892 0.9790
0.1555 2.6033 1250 0.0765 0.8984 0.9285 0.9132 0.9828
0.0941 3.1248 1500 0.0662 0.9207 0.9387 0.9296 0.9864
0.0941 3.6449 1750 0.0658 0.9361 0.9452 0.9406 0.9875
0.0643 4.1664 2000 0.0630 0.9317 0.9508 0.9411 0.9886
0.0643 4.6865 2250 0.0589 0.9338 0.9503 0.9420 0.9892
0.0503 5.2080 2500 0.0613 0.9339 0.9517 0.9427 0.9888

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
59
Safetensors
Model size
357M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for armanbb/layoutlmv3-finetuned-full

Quantized
(2)
this model