See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/gemma-2-2b
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- aa95f3ab19fe1114_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/aa95f3ab19fe1114_train_data.json
type:
field_instruction: sentence1
field_output: sentence2
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: ardaspear/36c0aa6e-644e-4df7-bccd-fd7eadc06b04
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/aa95f3ab19fe1114_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: 50fcc401-3f1d-46f7-a45a-31d9232609c3
wandb_project: Gradients-On-Five
wandb_run: your_name
wandb_runid: 50fcc401-3f1d-46f7-a45a-31d9232609c3
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
36c0aa6e-644e-4df7-bccd-fd7eadc06b04
This model is a fine-tuned version of unsloth/gemma-2-2b on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.8144
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0234 | 1 | 4.3974 |
3.9912 | 0.2105 | 9 | 4.0293 |
3.5004 | 0.4211 | 18 | 3.4159 |
3.1938 | 0.6316 | 27 | 3.1821 |
2.8618 | 0.8421 | 36 | 3.0471 |
3.1419 | 1.0526 | 45 | 2.9490 |
2.7522 | 1.2632 | 54 | 2.8945 |
2.6119 | 1.4737 | 63 | 2.8574 |
2.63 | 1.6842 | 72 | 2.8363 |
3.0337 | 1.8947 | 81 | 2.8213 |
2.7309 | 2.1053 | 90 | 2.8160 |
2.7658 | 2.3158 | 99 | 2.8144 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for ardaspear/36c0aa6e-644e-4df7-bccd-fd7eadc06b04
Base model
unsloth/gemma-2-2b