arad1367 commited on
Commit
251f5e4
·
verified ·
1 Parent(s): 4f86003

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,748 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-base-en-v1.5
3
+ language:
4
+ - en
5
+ library_name: sentence-transformers
6
+ license: apache-2.0
7
+ metrics:
8
+ - cosine_accuracy@1
9
+ - cosine_accuracy@3
10
+ - cosine_accuracy@5
11
+ - cosine_accuracy@10
12
+ - cosine_precision@1
13
+ - cosine_precision@3
14
+ - cosine_precision@5
15
+ - cosine_precision@10
16
+ - cosine_recall@1
17
+ - cosine_recall@3
18
+ - cosine_recall@5
19
+ - cosine_recall@10
20
+ - cosine_ndcg@10
21
+ - cosine_mrr@10
22
+ - cosine_map@100
23
+ pipeline_tag: sentence-similarity
24
+ tags:
25
+ - sentence-transformers
26
+ - sentence-similarity
27
+ - feature-extraction
28
+ - generated_from_trainer
29
+ - dataset_size:396
30
+ - loss:MatryoshkaLoss
31
+ - loss:MultipleNegativesRankingLoss
32
+ widget:
33
+ - source_sentence: How can technographics contribute to predicting consumer behavior
34
+ in digital marketing?
35
+ sentences:
36
+ - Data analysis is essential in predicting consumer behavior in digital marketing.
37
+ Analysis of data related to consumer behavior, preferences and needs can reveal
38
+ patterns and trends that can be used to forecast future behavior and refine marketing
39
+ strategies.
40
+ - Technographics enables businesses to understand the technological habits and preferences
41
+ of their customers. By analyzing this data, companies can predict how these users
42
+ are likely to interact with their digital products or services, and tailor their
43
+ marketing strategies accordingly.
44
+ - The key components include data collection (gathering data from various sources),
45
+ data analysis (using algorithms and models to analyze data), and predictive modelling
46
+ (predicting future customer behavior based on analyzed data).
47
+ - source_sentence: How is technographic data collected for understanding cross-channel
48
+ behavior?
49
+ sentences:
50
+ - Technographic data for understanding cross-channel behavior is collected through
51
+ various data analytics tools that track the customer's interactions across different
52
+ digital channels. These tools can monitor website usage, mobile app activity,
53
+ social media engagements, and email click-through rates.
54
+ - Adobe's "Real-Time Marketing Insights" is a notable case. They utilized technographic
55
+ data to identify their customer's most-used digital tools, leading to significant
56
+ enhancements in their personalized marketing strategies and an increase in customer
57
+ engagement.
58
+ - Technology stack analysis helps identify the tools and platforms a company uses
59
+ for digital marketing. It enables marketers to understand the infrastructure that
60
+ supports their strategies and spot opportunities for innovation or consolidation.
61
+ - source_sentence: How does consumer behavior pattern analysis contribute to the effectiveness
62
+ of digital marketing campaigns?
63
+ sentences:
64
+ - Machine learning can identify patterns and trends in technographic data that may
65
+ not be obvious to humans. It can also predict future behavior based on these patterns,
66
+ allowing businesses to anticipate consumer needs and adjust their strategies accordingly.
67
+ - Consumer behavior pattern analysis provides insights into how, when, and why consumers
68
+ interact with digital marketing content. These insights can be used to refine
69
+ campaign strategies, enhance personalization, and ultimately improve conversion
70
+ rates and customer loyalty.
71
+ - Predictive analytics can forecast what content will resonate best with certain
72
+ audience segments based on past engagement. It can guide topics, formats, and
73
+ delivery channels, enabling marketers to create content that is more likely to
74
+ attract and engage their target audience.
75
+ - source_sentence: What are technographics in the context of digital marketing?
76
+ sentences:
77
+ - Technographics is a market research analysis method that investigates the technology-related
78
+ behaviors and preferences of consumers. This includes their usage, adoption and
79
+ purchase of technology, which is crucial in forming a comprehensive understanding
80
+ of your target audience's digital landscape.
81
+ - Technographics data can be collected through surveys, social media mining, or
82
+ purchased from data providers. The data is analyzed using statistical techniques
83
+ or machine learning algorithms to identify patterns and insights related to consumer
84
+ behavior.
85
+ - Technographics can help businesses understand what platforms or technologies their
86
+ competitors' customers use, providing insights into competitor tech strengths
87
+ and weaknesses. This can guide businesses in differentiating their offers and
88
+ positioning themselves more effectively in the market.
89
+ - source_sentence: How important is it to update technographic data frequently?
90
+ sentences:
91
+ - By analyzing a competitor's technology stack, marketers can gain insights into
92
+ their strategies, tools, and platforms. This knowledge can help them identify
93
+ gaps in their own stack, adopt superior technologies, or find ways to differentiate
94
+ their approach.
95
+ - It is crucial. Technology trends and usage patterns evolve quickly. Keeping your
96
+ technographic data up-to-date ensures that your marketing strategies remain relevant
97
+ and effective.
98
+ - Technographics is a research methodology that provides data about consumers based
99
+ on their technology use, preferences and behavior. This method helps businesses
100
+ understand which technologies their audience is using, and how they use them,
101
+ thereby, informing the development of more effective and personalized marketing
102
+ strategies.
103
+ model-index:
104
+ - name: Technographics Marketing Matryoshka
105
+ results:
106
+ - task:
107
+ type: information-retrieval
108
+ name: Information Retrieval
109
+ dataset:
110
+ name: dim 768
111
+ type: dim_768
112
+ metrics:
113
+ - type: cosine_accuracy@1
114
+ value: 0.37373737373737376
115
+ name: Cosine Accuracy@1
116
+ - type: cosine_accuracy@3
117
+ value: 0.5050505050505051
118
+ name: Cosine Accuracy@3
119
+ - type: cosine_accuracy@5
120
+ value: 0.5757575757575758
121
+ name: Cosine Accuracy@5
122
+ - type: cosine_accuracy@10
123
+ value: 0.7575757575757576
124
+ name: Cosine Accuracy@10
125
+ - type: cosine_precision@1
126
+ value: 0.37373737373737376
127
+ name: Cosine Precision@1
128
+ - type: cosine_precision@3
129
+ value: 0.16835016835016833
130
+ name: Cosine Precision@3
131
+ - type: cosine_precision@5
132
+ value: 0.11515151515151514
133
+ name: Cosine Precision@5
134
+ - type: cosine_precision@10
135
+ value: 0.07575757575757575
136
+ name: Cosine Precision@10
137
+ - type: cosine_recall@1
138
+ value: 0.37373737373737376
139
+ name: Cosine Recall@1
140
+ - type: cosine_recall@3
141
+ value: 0.5050505050505051
142
+ name: Cosine Recall@3
143
+ - type: cosine_recall@5
144
+ value: 0.5757575757575758
145
+ name: Cosine Recall@5
146
+ - type: cosine_recall@10
147
+ value: 0.7575757575757576
148
+ name: Cosine Recall@10
149
+ - type: cosine_ndcg@10
150
+ value: 0.5323267552745661
151
+ name: Cosine Ndcg@10
152
+ - type: cosine_mrr@10
153
+ value: 0.46469456469456494
154
+ name: Cosine Mrr@10
155
+ - type: cosine_map@100
156
+ value: 0.47723382714423296
157
+ name: Cosine Map@100
158
+ - task:
159
+ type: information-retrieval
160
+ name: Information Retrieval
161
+ dataset:
162
+ name: dim 512
163
+ type: dim_512
164
+ metrics:
165
+ - type: cosine_accuracy@1
166
+ value: 0.37373737373737376
167
+ name: Cosine Accuracy@1
168
+ - type: cosine_accuracy@3
169
+ value: 0.5151515151515151
170
+ name: Cosine Accuracy@3
171
+ - type: cosine_accuracy@5
172
+ value: 0.5757575757575758
173
+ name: Cosine Accuracy@5
174
+ - type: cosine_accuracy@10
175
+ value: 0.7272727272727273
176
+ name: Cosine Accuracy@10
177
+ - type: cosine_precision@1
178
+ value: 0.37373737373737376
179
+ name: Cosine Precision@1
180
+ - type: cosine_precision@3
181
+ value: 0.17171717171717168
182
+ name: Cosine Precision@3
183
+ - type: cosine_precision@5
184
+ value: 0.11515151515151514
185
+ name: Cosine Precision@5
186
+ - type: cosine_precision@10
187
+ value: 0.0727272727272727
188
+ name: Cosine Precision@10
189
+ - type: cosine_recall@1
190
+ value: 0.37373737373737376
191
+ name: Cosine Recall@1
192
+ - type: cosine_recall@3
193
+ value: 0.5151515151515151
194
+ name: Cosine Recall@3
195
+ - type: cosine_recall@5
196
+ value: 0.5757575757575758
197
+ name: Cosine Recall@5
198
+ - type: cosine_recall@10
199
+ value: 0.7272727272727273
200
+ name: Cosine Recall@10
201
+ - type: cosine_ndcg@10
202
+ value: 0.5279877868900206
203
+ name: Cosine Ndcg@10
204
+ - type: cosine_mrr@10
205
+ value: 0.46727994227994235
206
+ name: Cosine Mrr@10
207
+ - type: cosine_map@100
208
+ value: 0.4818097786730832
209
+ name: Cosine Map@100
210
+ - task:
211
+ type: information-retrieval
212
+ name: Information Retrieval
213
+ dataset:
214
+ name: dim 256
215
+ type: dim_256
216
+ metrics:
217
+ - type: cosine_accuracy@1
218
+ value: 0.35353535353535354
219
+ name: Cosine Accuracy@1
220
+ - type: cosine_accuracy@3
221
+ value: 0.48484848484848486
222
+ name: Cosine Accuracy@3
223
+ - type: cosine_accuracy@5
224
+ value: 0.5858585858585859
225
+ name: Cosine Accuracy@5
226
+ - type: cosine_accuracy@10
227
+ value: 0.7070707070707071
228
+ name: Cosine Accuracy@10
229
+ - type: cosine_precision@1
230
+ value: 0.35353535353535354
231
+ name: Cosine Precision@1
232
+ - type: cosine_precision@3
233
+ value: 0.16161616161616163
234
+ name: Cosine Precision@3
235
+ - type: cosine_precision@5
236
+ value: 0.11717171717171715
237
+ name: Cosine Precision@5
238
+ - type: cosine_precision@10
239
+ value: 0.07070707070707069
240
+ name: Cosine Precision@10
241
+ - type: cosine_recall@1
242
+ value: 0.35353535353535354
243
+ name: Cosine Recall@1
244
+ - type: cosine_recall@3
245
+ value: 0.48484848484848486
246
+ name: Cosine Recall@3
247
+ - type: cosine_recall@5
248
+ value: 0.5858585858585859
249
+ name: Cosine Recall@5
250
+ - type: cosine_recall@10
251
+ value: 0.7070707070707071
252
+ name: Cosine Recall@10
253
+ - type: cosine_ndcg@10
254
+ value: 0.5102400942328595
255
+ name: Cosine Ndcg@10
256
+ - type: cosine_mrr@10
257
+ value: 0.44968734968734975
258
+ name: Cosine Mrr@10
259
+ - type: cosine_map@100
260
+ value: 0.4654526924283992
261
+ name: Cosine Map@100
262
+ - task:
263
+ type: information-retrieval
264
+ name: Information Retrieval
265
+ dataset:
266
+ name: dim 128
267
+ type: dim_128
268
+ metrics:
269
+ - type: cosine_accuracy@1
270
+ value: 0.37373737373737376
271
+ name: Cosine Accuracy@1
272
+ - type: cosine_accuracy@3
273
+ value: 0.47474747474747475
274
+ name: Cosine Accuracy@3
275
+ - type: cosine_accuracy@5
276
+ value: 0.5757575757575758
277
+ name: Cosine Accuracy@5
278
+ - type: cosine_accuracy@10
279
+ value: 0.6868686868686869
280
+ name: Cosine Accuracy@10
281
+ - type: cosine_precision@1
282
+ value: 0.37373737373737376
283
+ name: Cosine Precision@1
284
+ - type: cosine_precision@3
285
+ value: 0.15824915824915825
286
+ name: Cosine Precision@3
287
+ - type: cosine_precision@5
288
+ value: 0.11515151515151512
289
+ name: Cosine Precision@5
290
+ - type: cosine_precision@10
291
+ value: 0.06868686868686867
292
+ name: Cosine Precision@10
293
+ - type: cosine_recall@1
294
+ value: 0.37373737373737376
295
+ name: Cosine Recall@1
296
+ - type: cosine_recall@3
297
+ value: 0.47474747474747475
298
+ name: Cosine Recall@3
299
+ - type: cosine_recall@5
300
+ value: 0.5757575757575758
301
+ name: Cosine Recall@5
302
+ - type: cosine_recall@10
303
+ value: 0.6868686868686869
304
+ name: Cosine Recall@10
305
+ - type: cosine_ndcg@10
306
+ value: 0.5096813265364254
307
+ name: Cosine Ndcg@10
308
+ - type: cosine_mrr@10
309
+ value: 0.45540724707391383
310
+ name: Cosine Mrr@10
311
+ - type: cosine_map@100
312
+ value: 0.4713790516617994
313
+ name: Cosine Map@100
314
+ - task:
315
+ type: information-retrieval
316
+ name: Information Retrieval
317
+ dataset:
318
+ name: dim 64
319
+ type: dim_64
320
+ metrics:
321
+ - type: cosine_accuracy@1
322
+ value: 0.3434343434343434
323
+ name: Cosine Accuracy@1
324
+ - type: cosine_accuracy@3
325
+ value: 0.48484848484848486
326
+ name: Cosine Accuracy@3
327
+ - type: cosine_accuracy@5
328
+ value: 0.5353535353535354
329
+ name: Cosine Accuracy@5
330
+ - type: cosine_accuracy@10
331
+ value: 0.6868686868686869
332
+ name: Cosine Accuracy@10
333
+ - type: cosine_precision@1
334
+ value: 0.3434343434343434
335
+ name: Cosine Precision@1
336
+ - type: cosine_precision@3
337
+ value: 0.16161616161616163
338
+ name: Cosine Precision@3
339
+ - type: cosine_precision@5
340
+ value: 0.10707070707070705
341
+ name: Cosine Precision@5
342
+ - type: cosine_precision@10
343
+ value: 0.06868686868686867
344
+ name: Cosine Precision@10
345
+ - type: cosine_recall@1
346
+ value: 0.3434343434343434
347
+ name: Cosine Recall@1
348
+ - type: cosine_recall@3
349
+ value: 0.48484848484848486
350
+ name: Cosine Recall@3
351
+ - type: cosine_recall@5
352
+ value: 0.5353535353535354
353
+ name: Cosine Recall@5
354
+ - type: cosine_recall@10
355
+ value: 0.6868686868686869
356
+ name: Cosine Recall@10
357
+ - type: cosine_ndcg@10
358
+ value: 0.4979120019313254
359
+ name: Cosine Ndcg@10
360
+ - type: cosine_mrr@10
361
+ value: 0.44037197370530706
362
+ name: Cosine Mrr@10
363
+ - type: cosine_map@100
364
+ value: 0.4556726424225123
365
+ name: Cosine Map@100
366
+ ---
367
+
368
+ # Technographics Marketing Matryoshka
369
+
370
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
371
+
372
+ ## Model Details
373
+
374
+ ### Model Description
375
+ - **Model Type:** Sentence Transformer
376
+ - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
377
+ - **Maximum Sequence Length:** 512 tokens
378
+ - **Output Dimensionality:** 768 dimensions
379
+ - **Similarity Function:** Cosine Similarity
380
+ - **Training Dataset:**
381
+ - json
382
+ - **Language:** en
383
+ - **License:** apache-2.0
384
+
385
+ ### Model Sources
386
+
387
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
388
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
389
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
390
+
391
+ ### Full Model Architecture
392
+
393
+ ```
394
+ SentenceTransformer(
395
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
396
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
397
+ (2): Normalize()
398
+ )
399
+ ```
400
+
401
+ ## Usage
402
+
403
+ ### Direct Usage (Sentence Transformers)
404
+
405
+ First install the Sentence Transformers library:
406
+
407
+ ```bash
408
+ pip install -U sentence-transformers
409
+ ```
410
+
411
+ Then you can load this model and run inference.
412
+ ```python
413
+ from sentence_transformers import SentenceTransformer
414
+
415
+ # Download from the 🤗 Hub
416
+ model = SentenceTransformer("arad1367/technographics-marketing-matryoshka")
417
+ # Run inference
418
+ sentences = [
419
+ 'How important is it to update technographic data frequently?',
420
+ 'It is crucial. Technology trends and usage patterns evolve quickly. Keeping your technographic data up-to-date ensures that your marketing strategies remain relevant and effective.',
421
+ "By analyzing a competitor's technology stack, marketers can gain insights into their strategies, tools, and platforms. This knowledge can help them identify gaps in their own stack, adopt superior technologies, or find ways to differentiate their approach.",
422
+ ]
423
+ embeddings = model.encode(sentences)
424
+ print(embeddings.shape)
425
+ # [3, 768]
426
+
427
+ # Get the similarity scores for the embeddings
428
+ similarities = model.similarity(embeddings, embeddings)
429
+ print(similarities.shape)
430
+ # [3, 3]
431
+ ```
432
+
433
+ <!--
434
+ ### Direct Usage (Transformers)
435
+
436
+ <details><summary>Click to see the direct usage in Transformers</summary>
437
+
438
+ </details>
439
+ -->
440
+
441
+ <!--
442
+ ### Downstream Usage (Sentence Transformers)
443
+
444
+ You can finetune this model on your own dataset.
445
+
446
+ <details><summary>Click to expand</summary>
447
+
448
+ </details>
449
+ -->
450
+
451
+ <!--
452
+ ### Out-of-Scope Use
453
+
454
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
455
+ -->
456
+
457
+ ## Evaluation
458
+
459
+ ### Metrics
460
+
461
+ #### Information Retrieval
462
+
463
+ * Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64`
464
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
465
+
466
+ | Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
467
+ |:--------------------|:-----------|:----------|:-----------|:-----------|:-----------|
468
+ | cosine_accuracy@1 | 0.3737 | 0.3737 | 0.3535 | 0.3737 | 0.3434 |
469
+ | cosine_accuracy@3 | 0.5051 | 0.5152 | 0.4848 | 0.4747 | 0.4848 |
470
+ | cosine_accuracy@5 | 0.5758 | 0.5758 | 0.5859 | 0.5758 | 0.5354 |
471
+ | cosine_accuracy@10 | 0.7576 | 0.7273 | 0.7071 | 0.6869 | 0.6869 |
472
+ | cosine_precision@1 | 0.3737 | 0.3737 | 0.3535 | 0.3737 | 0.3434 |
473
+ | cosine_precision@3 | 0.1684 | 0.1717 | 0.1616 | 0.1582 | 0.1616 |
474
+ | cosine_precision@5 | 0.1152 | 0.1152 | 0.1172 | 0.1152 | 0.1071 |
475
+ | cosine_precision@10 | 0.0758 | 0.0727 | 0.0707 | 0.0687 | 0.0687 |
476
+ | cosine_recall@1 | 0.3737 | 0.3737 | 0.3535 | 0.3737 | 0.3434 |
477
+ | cosine_recall@3 | 0.5051 | 0.5152 | 0.4848 | 0.4747 | 0.4848 |
478
+ | cosine_recall@5 | 0.5758 | 0.5758 | 0.5859 | 0.5758 | 0.5354 |
479
+ | cosine_recall@10 | 0.7576 | 0.7273 | 0.7071 | 0.6869 | 0.6869 |
480
+ | **cosine_ndcg@10** | **0.5323** | **0.528** | **0.5102** | **0.5097** | **0.4979** |
481
+ | cosine_mrr@10 | 0.4647 | 0.4673 | 0.4497 | 0.4554 | 0.4404 |
482
+ | cosine_map@100 | 0.4772 | 0.4818 | 0.4655 | 0.4714 | 0.4557 |
483
+
484
+ <!--
485
+ ## Bias, Risks and Limitations
486
+
487
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
488
+ -->
489
+
490
+ <!--
491
+ ### Recommendations
492
+
493
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
494
+ -->
495
+
496
+ ## Training Details
497
+
498
+ ### Training Dataset
499
+
500
+ #### json
501
+
502
+ * Dataset: json
503
+ * Size: 396 training samples
504
+ * Columns: <code>anchor</code> and <code>positive</code>
505
+ * Approximate statistics based on the first 396 samples:
506
+ | | anchor | positive |
507
+ |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
508
+ | type | string | string |
509
+ | details | <ul><li>min: 8 tokens</li><li>mean: 15.71 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 29 tokens</li><li>mean: 48.68 tokens</li><li>max: 82 tokens</li></ul> |
510
+ * Samples:
511
+ | anchor | positive |
512
+ |:---------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
513
+ | <code>What role does customer segmentation play in predictive analytics?</code> | <code>Customer segmentation within predictive analytics allows marketers to group customers based on similar characteristics. This helps in creating more targeted marketing strategies and predicting behavior patterns for each segment, improving overall campaign effectiveness.</code> |
514
+ | <code>How has technographics evolved over the years to accommodate the digital space?</code> | <code>Initially focused on hardware and software usage, technographics has evolved to consider digital platforms and tools. It now investigates consumer behavior across different channels, devices, and even social media platforms to provide a more comprehensive consumer profile.</code> |
515
+ | <code>Can you name some common methods of collecting technographic data?</code> | <code>Some common methods include surveys, interviews, online browsing behavior tracking, and direct observation. In addition, databases can be bought from vendors specializing in technographic data collection.</code> |
516
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
517
+ ```json
518
+ {
519
+ "loss": "MultipleNegativesRankingLoss",
520
+ "matryoshka_dims": [
521
+ 768,
522
+ 512,
523
+ 256,
524
+ 128,
525
+ 64
526
+ ],
527
+ "matryoshka_weights": [
528
+ 1,
529
+ 1,
530
+ 1,
531
+ 1,
532
+ 1
533
+ ],
534
+ "n_dims_per_step": -1
535
+ }
536
+ ```
537
+
538
+ ### Training Hyperparameters
539
+ #### Non-Default Hyperparameters
540
+
541
+ - `eval_strategy`: epoch
542
+ - `per_device_train_batch_size`: 32
543
+ - `per_device_eval_batch_size`: 16
544
+ - `gradient_accumulation_steps`: 16
545
+ - `learning_rate`: 2e-05
546
+ - `num_train_epochs`: 10
547
+ - `lr_scheduler_type`: cosine
548
+ - `warmup_ratio`: 0.1
549
+ - `bf16`: True
550
+ - `tf32`: True
551
+ - `load_best_model_at_end`: True
552
+ - `optim`: adamw_torch_fused
553
+ - `batch_sampler`: no_duplicates
554
+
555
+ #### All Hyperparameters
556
+ <details><summary>Click to expand</summary>
557
+
558
+ - `overwrite_output_dir`: False
559
+ - `do_predict`: False
560
+ - `eval_strategy`: epoch
561
+ - `prediction_loss_only`: True
562
+ - `per_device_train_batch_size`: 32
563
+ - `per_device_eval_batch_size`: 16
564
+ - `per_gpu_train_batch_size`: None
565
+ - `per_gpu_eval_batch_size`: None
566
+ - `gradient_accumulation_steps`: 16
567
+ - `eval_accumulation_steps`: None
568
+ - `learning_rate`: 2e-05
569
+ - `weight_decay`: 0.0
570
+ - `adam_beta1`: 0.9
571
+ - `adam_beta2`: 0.999
572
+ - `adam_epsilon`: 1e-08
573
+ - `max_grad_norm`: 1.0
574
+ - `num_train_epochs`: 10
575
+ - `max_steps`: -1
576
+ - `lr_scheduler_type`: cosine
577
+ - `lr_scheduler_kwargs`: {}
578
+ - `warmup_ratio`: 0.1
579
+ - `warmup_steps`: 0
580
+ - `log_level`: passive
581
+ - `log_level_replica`: warning
582
+ - `log_on_each_node`: True
583
+ - `logging_nan_inf_filter`: True
584
+ - `save_safetensors`: True
585
+ - `save_on_each_node`: False
586
+ - `save_only_model`: False
587
+ - `restore_callback_states_from_checkpoint`: False
588
+ - `no_cuda`: False
589
+ - `use_cpu`: False
590
+ - `use_mps_device`: False
591
+ - `seed`: 42
592
+ - `data_seed`: None
593
+ - `jit_mode_eval`: False
594
+ - `use_ipex`: False
595
+ - `bf16`: True
596
+ - `fp16`: False
597
+ - `fp16_opt_level`: O1
598
+ - `half_precision_backend`: auto
599
+ - `bf16_full_eval`: False
600
+ - `fp16_full_eval`: False
601
+ - `tf32`: True
602
+ - `local_rank`: 0
603
+ - `ddp_backend`: None
604
+ - `tpu_num_cores`: None
605
+ - `tpu_metrics_debug`: False
606
+ - `debug`: []
607
+ - `dataloader_drop_last`: False
608
+ - `dataloader_num_workers`: 0
609
+ - `dataloader_prefetch_factor`: None
610
+ - `past_index`: -1
611
+ - `disable_tqdm`: False
612
+ - `remove_unused_columns`: True
613
+ - `label_names`: None
614
+ - `load_best_model_at_end`: True
615
+ - `ignore_data_skip`: False
616
+ - `fsdp`: []
617
+ - `fsdp_min_num_params`: 0
618
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
619
+ - `fsdp_transformer_layer_cls_to_wrap`: None
620
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
621
+ - `deepspeed`: None
622
+ - `label_smoothing_factor`: 0.0
623
+ - `optim`: adamw_torch_fused
624
+ - `optim_args`: None
625
+ - `adafactor`: False
626
+ - `group_by_length`: False
627
+ - `length_column_name`: length
628
+ - `ddp_find_unused_parameters`: None
629
+ - `ddp_bucket_cap_mb`: None
630
+ - `ddp_broadcast_buffers`: False
631
+ - `dataloader_pin_memory`: True
632
+ - `dataloader_persistent_workers`: False
633
+ - `skip_memory_metrics`: True
634
+ - `use_legacy_prediction_loop`: False
635
+ - `push_to_hub`: False
636
+ - `resume_from_checkpoint`: None
637
+ - `hub_model_id`: None
638
+ - `hub_strategy`: every_save
639
+ - `hub_private_repo`: False
640
+ - `hub_always_push`: False
641
+ - `gradient_checkpointing`: False
642
+ - `gradient_checkpointing_kwargs`: None
643
+ - `include_inputs_for_metrics`: False
644
+ - `eval_do_concat_batches`: True
645
+ - `fp16_backend`: auto
646
+ - `push_to_hub_model_id`: None
647
+ - `push_to_hub_organization`: None
648
+ - `mp_parameters`:
649
+ - `auto_find_batch_size`: False
650
+ - `full_determinism`: False
651
+ - `torchdynamo`: None
652
+ - `ray_scope`: last
653
+ - `ddp_timeout`: 1800
654
+ - `torch_compile`: False
655
+ - `torch_compile_backend`: None
656
+ - `torch_compile_mode`: None
657
+ - `dispatch_batches`: None
658
+ - `split_batches`: None
659
+ - `include_tokens_per_second`: False
660
+ - `include_num_input_tokens_seen`: False
661
+ - `neftune_noise_alpha`: None
662
+ - `optim_target_modules`: None
663
+ - `batch_eval_metrics`: False
664
+ - `prompts`: None
665
+ - `batch_sampler`: no_duplicates
666
+ - `multi_dataset_batch_sampler`: proportional
667
+
668
+ </details>
669
+
670
+ ### Training Logs
671
+ | Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
672
+ |:-------:|:-----:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
673
+ | 1.0 | 1 | - | 0.4650 | 0.4667 | 0.4712 | 0.4371 | 0.4151 |
674
+ | 2.0 | 3 | - | 0.5316 | 0.5307 | 0.5051 | 0.4810 | 0.4407 |
675
+ | **3.0** | **5** | **-** | **0.5256** | **0.5222** | **0.5136** | **0.5104** | **0.4742** |
676
+ | 4.0 | 7 | - | 0.5316 | 0.5269 | 0.5120 | 0.5083 | 0.4790 |
677
+ | 5.0 | 9 | - | 0.5337 | 0.5280 | 0.5102 | 0.5101 | 0.4983 |
678
+ | 6.0 | 10 | 2.9453 | 0.5323 | 0.5280 | 0.5102 | 0.5097 | 0.4979 |
679
+
680
+ * The bold row denotes the saved checkpoint.
681
+
682
+ ### Framework Versions
683
+ - Python: 3.11.4
684
+ - Sentence Transformers: 3.4.1
685
+ - Transformers: 4.41.2
686
+ - PyTorch: 2.1.2+cu121
687
+ - Accelerate: 0.34.2
688
+ - Datasets: 2.19.1
689
+ - Tokenizers: 0.19.1
690
+
691
+ ## Citation
692
+
693
+ ### BibTeX
694
+
695
+ #### Sentence Transformers
696
+ ```bibtex
697
+ @inproceedings{reimers-2019-sentence-bert,
698
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
699
+ author = "Reimers, Nils and Gurevych, Iryna",
700
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
701
+ month = "11",
702
+ year = "2019",
703
+ publisher = "Association for Computational Linguistics",
704
+ url = "https://arxiv.org/abs/1908.10084",
705
+ }
706
+ ```
707
+
708
+ #### MatryoshkaLoss
709
+ ```bibtex
710
+ @misc{kusupati2024matryoshka,
711
+ title={Matryoshka Representation Learning},
712
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
713
+ year={2024},
714
+ eprint={2205.13147},
715
+ archivePrefix={arXiv},
716
+ primaryClass={cs.LG}
717
+ }
718
+ ```
719
+
720
+ #### MultipleNegativesRankingLoss
721
+ ```bibtex
722
+ @misc{henderson2017efficient,
723
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
724
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
725
+ year={2017},
726
+ eprint={1705.00652},
727
+ archivePrefix={arXiv},
728
+ primaryClass={cs.CL}
729
+ }
730
+ ```
731
+
732
+ <!--
733
+ ## Glossary
734
+
735
+ *Clearly define terms in order to be accessible across audiences.*
736
+ -->
737
+
738
+ <!--
739
+ ## Model Card Authors
740
+
741
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
742
+ -->
743
+
744
+ <!--
745
+ ## Model Card Contact
746
+
747
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
748
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-base-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.41.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.1.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d8c0fde12904bacfde0a3543792a567ec43ec33ff35f2e17638352087753f998
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff