Technographics Marketing Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("arad1367/technographics-marketing-matryoshka")
# Run inference
sentences = [
'How important is it to update technographic data frequently?',
'It is crucial. Technology trends and usage patterns evolve quickly. Keeping your technographic data up-to-date ensures that your marketing strategies remain relevant and effective.',
"By analyzing a competitor's technology stack, marketers can gain insights into their strategies, tools, and platforms. This knowledge can help them identify gaps in their own stack, adopt superior technologies, or find ways to differentiate their approach.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
dim_768
,dim_512
,dim_256
,dim_128
anddim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
---|---|---|---|---|---|
cosine_accuracy@1 | 0.3737 | 0.3737 | 0.3535 | 0.3737 | 0.3434 |
cosine_accuracy@3 | 0.5051 | 0.5152 | 0.4848 | 0.4747 | 0.4848 |
cosine_accuracy@5 | 0.5758 | 0.5758 | 0.5859 | 0.5758 | 0.5354 |
cosine_accuracy@10 | 0.7576 | 0.7273 | 0.7071 | 0.6869 | 0.6869 |
cosine_precision@1 | 0.3737 | 0.3737 | 0.3535 | 0.3737 | 0.3434 |
cosine_precision@3 | 0.1684 | 0.1717 | 0.1616 | 0.1582 | 0.1616 |
cosine_precision@5 | 0.1152 | 0.1152 | 0.1172 | 0.1152 | 0.1071 |
cosine_precision@10 | 0.0758 | 0.0727 | 0.0707 | 0.0687 | 0.0687 |
cosine_recall@1 | 0.3737 | 0.3737 | 0.3535 | 0.3737 | 0.3434 |
cosine_recall@3 | 0.5051 | 0.5152 | 0.4848 | 0.4747 | 0.4848 |
cosine_recall@5 | 0.5758 | 0.5758 | 0.5859 | 0.5758 | 0.5354 |
cosine_recall@10 | 0.7576 | 0.7273 | 0.7071 | 0.6869 | 0.6869 |
cosine_ndcg@10 | 0.5323 | 0.528 | 0.5102 | 0.5097 | 0.4979 |
cosine_mrr@10 | 0.4647 | 0.4673 | 0.4497 | 0.4554 | 0.4404 |
cosine_map@100 | 0.4772 | 0.4818 | 0.4655 | 0.4714 | 0.4557 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 396 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 396 samples:
anchor positive type string string details - min: 8 tokens
- mean: 15.71 tokens
- max: 28 tokens
- min: 29 tokens
- mean: 48.68 tokens
- max: 82 tokens
- Samples:
anchor positive What role does customer segmentation play in predictive analytics?
Customer segmentation within predictive analytics allows marketers to group customers based on similar characteristics. This helps in creating more targeted marketing strategies and predicting behavior patterns for each segment, improving overall campaign effectiveness.
How has technographics evolved over the years to accommodate the digital space?
Initially focused on hardware and software usage, technographics has evolved to consider digital platforms and tools. It now investigates consumer behavior across different channels, devices, and even social media platforms to provide a more comprehensive consumer profile.
Can you name some common methods of collecting technographic data?
Some common methods include surveys, interviews, online browsing behavior tracking, and direct observation. In addition, databases can be bought from vendors specializing in technographic data collection.
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 10lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|---|
1.0 | 1 | - | 0.4650 | 0.4667 | 0.4712 | 0.4371 | 0.4151 |
2.0 | 3 | - | 0.5316 | 0.5307 | 0.5051 | 0.4810 | 0.4407 |
3.0 | 5 | - | 0.5256 | 0.5222 | 0.5136 | 0.5104 | 0.4742 |
4.0 | 7 | - | 0.5316 | 0.5269 | 0.5120 | 0.5083 | 0.4790 |
5.0 | 9 | - | 0.5337 | 0.5280 | 0.5102 | 0.5101 | 0.4983 |
6.0 | 10 | 2.9453 | 0.5323 | 0.5280 | 0.5102 | 0.5097 | 0.4979 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.4
- Sentence Transformers: 3.4.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.34.2
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 7
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for arad1367/technographics-marketing-matryoshka
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.374
- Cosine Accuracy@3 on dim 768self-reported0.505
- Cosine Accuracy@5 on dim 768self-reported0.576
- Cosine Accuracy@10 on dim 768self-reported0.758
- Cosine Precision@1 on dim 768self-reported0.374
- Cosine Precision@3 on dim 768self-reported0.168
- Cosine Precision@5 on dim 768self-reported0.115
- Cosine Precision@10 on dim 768self-reported0.076
- Cosine Recall@1 on dim 768self-reported0.374
- Cosine Recall@3 on dim 768self-reported0.505