antalvdb's picture
Training completed!
6af8314 verified
|
raw
history blame
4.37 kB
metadata
license: mit
base_model: pdelobelle/robbert-v2-dutch-base
tags:
  - generated_from_trainer
model-index:
  - name: robbert-v2-dutch-base-finetuned-emotion-valence
    results: []

robbert-v2-dutch-base-finetuned-emotion-valence

This model is a fine-tuned version of pdelobelle/robbert-v2-dutch-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0327
  • Rmse: 0.1808

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Rmse
0.0887 1.0 25 0.0611 0.2472
0.044 2.0 50 0.0403 0.2008
0.0356 3.0 75 0.0435 0.2085
0.0301 4.0 100 0.0415 0.2038
0.0246 5.0 125 0.0377 0.1941
0.0224 6.0 150 0.0355 0.1885
0.0218 7.0 175 0.0379 0.1946
0.0174 8.0 200 0.0436 0.2088
0.0156 9.0 225 0.0361 0.1901
0.0138 10.0 250 0.0379 0.1947
0.0135 11.0 275 0.0386 0.1965
0.013 12.0 300 0.0402 0.2005
0.0125 13.0 325 0.0325 0.1804
0.0117 14.0 350 0.0349 0.1868
0.0109 15.0 375 0.0366 0.1914
0.0108 16.0 400 0.0382 0.1953
0.0091 17.0 425 0.0336 0.1833
0.0097 18.0 450 0.0325 0.1802
0.0098 19.0 475 0.0406 0.2014
0.0094 20.0 500 0.0330 0.1816
0.0088 21.0 525 0.0349 0.1868
0.0087 22.0 550 0.0337 0.1835
0.0079 23.0 575 0.0340 0.1845
0.0074 24.0 600 0.0372 0.1928
0.007 25.0 625 0.0345 0.1856
0.0072 26.0 650 0.0333 0.1824
0.0074 27.0 675 0.0308 0.1756
0.0071 28.0 700 0.0314 0.1772
0.0067 29.0 725 0.0314 0.1772
0.0065 30.0 750 0.0333 0.1824
0.0072 31.0 775 0.0337 0.1837
0.0065 32.0 800 0.0351 0.1873
0.0057 33.0 825 0.0330 0.1818
0.0067 34.0 850 0.0367 0.1915
0.0061 35.0 875 0.0358 0.1893
0.0062 36.0 900 0.0353 0.1879
0.006 37.0 925 0.0317 0.1779
0.0059 38.0 950 0.0331 0.1819
0.0058 39.0 975 0.0308 0.1755
0.0057 40.0 1000 0.0338 0.1838
0.0055 41.0 1025 0.0324 0.1800
0.0056 42.0 1050 0.0333 0.1824
0.0054 43.0 1075 0.0331 0.1819
0.0062 44.0 1100 0.0329 0.1813
0.0056 45.0 1125 0.0325 0.1802
0.0051 46.0 1150 0.0324 0.1801
0.0056 47.0 1175 0.0322 0.1795
0.0056 48.0 1200 0.0331 0.1818
0.0053 49.0 1225 0.0322 0.1794
0.0056 50.0 1250 0.0327 0.1808

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1