Falcon-TST_Large / configuration_FalconTST.py
rulixiang's picture
Update ckpt
303bbc0
"""
Configuration class for FalconTST model.
This module defines the configuration for FalconTST, a large-scale time series foundation model
that utilizes Mixture of Experts (MoE) architecture with multiple patch tokenizers.
"""
from typing import List, Optional, Union
from transformers import PretrainedConfig
import torch
class FalconTSTConfig(PretrainedConfig):
"""
Configuration class for FalconTST model.
FalconTST is a time series foundation model that uses Mixture of Experts architecture
with multiple patch tokenizers for efficient time series forecasting.
This configuration inherits from [`PretrainedConfig`] and can be used to control the model
output. Read the documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 1024):
Dimensionality of the encoder layers and the pooler layer.
ffn_hidden_size (`int`, *optional*, defaults to 4096):
Dimensionality of the feed-forward networks in the transformer layers.
seq_length (`int`, *optional*, defaults to 2880):
Maximum sequence length that the model can handle.
add_bias_linear (`bool`, *optional*, defaults to `False`):
Whether to add bias in linear layers.
rope_theta (`int`, *optional*, defaults to 10000):
The base period of the RoPE embeddings.
num_hidden_layers (`int`, *optional*, defaults to 3):
Number of hidden layers in the transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the transformer encoder.
mask_pad_value (`float`, *optional*, defaults to 255.0):
Value used for padding/masking in input sequences.
expert_num_layers (`int`, *optional*, defaults to 4):
Number of transformer layers within each expert.
shared_patch_size (`int`, *optional*, defaults to 64):
Size of patches for the shared expert.
patch_size_list (`List[int]`, *optional*, defaults to [96, 64, 48, 24]):
List of patch sizes for different experts.
multi_forecast_head_list (`List[int]`, *optional*, defaults to [24, 96, 336]):
List of forecast lengths for multi-head prediction.
is_revin (`bool`, *optional*, defaults to `True`):
Whether to use RevIN (Reversible Instance Normalization).
params_dtype (`str`, *optional*, defaults to "bfloat16"):
Data type for model parameters.
use_cpu_initialization (`bool`, *optional*, defaults to `False`):
Whether to initialize model parameters on CPU.
rotary_interleaved (`bool`, *optional*, defaults to `False`):
Whether to use interleaved rotary position embeddings.
do_expert_forecast (`bool`, *optional*, defaults to `True`):
Whether experts perform forecasting.
residual_backcast (`bool`, *optional*, defaults to `True`):
Whether to use residual connections for backcast.
do_base_forecast (`bool`, *optional*, defaults to `False`):
Whether to use base forecasting.
heterogeneous_moe_layer (`bool`, *optional*, defaults to `True`):
Whether to use heterogeneous MoE layers.
test_data_seq_len (`int`, *optional*, defaults to 2880):
Sequence length for test data.
test_data_test_len (`int`, *optional*, defaults to 720):
Test length for test data.
autoregressive_step_list (`List[int]`, *optional*, defaults to [2, 4, 1]):
List of autoregressive steps for different forecast heads.
multi_forecast_head_type (`str`, *optional*, defaults to "single"):
Type of multi-forecast head aggregation.
num_experts (`int`, *optional*, defaults to 4):
Number of experts in the MoE layer.
moe_router_topk (`int`, *optional*, defaults to 2):
Number of top experts to route each token to.
moe_ffn_hidden_size (`int`, *optional*, defaults to 4096):
Hidden size for MoE feed-forward networks.
moe_shared_expert_intermediate_size (`int`, *optional*, defaults to 4096):
Intermediate size for shared experts.
init_method_std (`float`, *optional*, defaults to 0.06):
Standard deviation for weight initialization.
initializer_range (`float`, *optional*, defaults to 0.02):
Range for weight initialization.
moe_router_enable_expert_bias (`bool`, *optional*, defaults to `False`):
Whether to enable expert bias in routing.
moe_expert_final_layernorm (`bool`, *optional*, defaults to `True`):
Whether to apply layer normalization at the end of each expert.
transformer_input_layernorm (`bool`, *optional*, defaults to `True`):
Whether to apply layer normalization to transformer inputs.
moe_router_pre_softmax (`bool`, *optional*, defaults to `True`):
Whether to apply softmax before routing.
q_layernorm (`bool`, *optional*, defaults to `False`):
Whether to apply layer normalization to query vectors.
k_layernorm (`bool`, *optional*, defaults to `False`):
Whether to apply layer normalization to key vectors.
moe_router_score_function (`str`, *optional*, defaults to "softmax"):
Score function for MoE routing ("softmax" or "sigmoid").
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie word embeddings.
"""
model_type = "FalconTST"
def __init__(
self,
# model configs
add_bias_linear: bool = False,
num_hidden_layers: int = 3,
hidden_size: int = 1024,
ffn_hidden_size: int = 4096,
num_attention_heads: int = 16,
seq_length: int = 2880,
mask_pad_value: float = 255.0,
is_revin: bool = True,
shared_patch_size: int = 32,
patch_size_list: Optional[List[int]] = None,
residual_backcast: bool = True,
do_base_forecast: bool = False,
do_expert_forecast: bool = True,
heterogeneous_moe_layer: bool = False,
expert_num_layers: int = 4,
multi_forecast_head_list: Optional[List[int]] = None,
multi_forecast_head_type: str = "single",
rope_theta: int = 1000000,
rotary_interleaved: bool = False,
block_input_layernorm: bool = True,
# moe configs
num_experts: int = 4,
moe_router_topk: int = 2,
moe_router_pre_softmax: bool = True,
moe_router_score_function: str = "softmax",
moe_ffn_hidden_size: int = 4096,
moe_shared_expert_intermediate_size: int = 4096,
moe_router_enable_expert_bias: bool = False,
moe_expert_final_layernorm: bool = True,
# initial configs
use_cpu_initialization: bool = False,
init_method_std: float = 0.06,
initializer_range: float = 0.02,
# test configs
test_data_seq_len: int = 2880,
test_data_test_len: int = 720,
autoregressive_step_list: Optional[List[int]] = None,
**kwargs,
):
"""Initialize FalconTST configuration."""
# model configs
self.add_bias_linear = add_bias_linear
self.num_hidden_layers = num_hidden_layers
self.hidden_size = hidden_size
self.ffn_hidden_size = ffn_hidden_size
self.num_attention_heads = num_attention_heads
self.kv_channels = self.hidden_size // self.num_attention_heads
self.seq_length = seq_length
self.mask_pad_value = mask_pad_value
self.is_revin = is_revin
self.shared_patch_size = shared_patch_size
if patch_size_list is None:
patch_size_list = [96, 64, 48, 24]
self.patch_size_list = patch_size_list
self.residual_backcast = residual_backcast
self.do_base_forecast = do_base_forecast
self.do_expert_forecast = do_expert_forecast
self.heterogeneous_moe_layer = heterogeneous_moe_layer
self.expert_num_layers = expert_num_layers
if multi_forecast_head_list is None:
multi_forecast_head_list = [24, 96, 336]
self.multi_forecast_head_list = multi_forecast_head_list
self.pred_length = max(self.multi_forecast_head_list)
self.multi_forecast_head_type = multi_forecast_head_type
self.rotary_base = rope_theta
self.rotary_interleaved = rotary_interleaved
self.block_input_layernorm = block_input_layernorm
# moe configs
self.num_moe_experts = num_experts
self.moe_router_topk = moe_router_topk
self.moe_router_input_size = self.seq_length
self.moe_router_pre_softmax = moe_router_pre_softmax
self.moe_router_score_function = moe_router_score_function
self.moe_ffn_hidden_size = moe_ffn_hidden_size
self.moe_shared_expert_intermediate_size = moe_shared_expert_intermediate_size
self.moe_router_enable_expert_bias = moe_router_enable_expert_bias
self.moe_expert_final_layernorm = moe_expert_final_layernorm
# initial configs
self.use_cpu_initialization = use_cpu_initialization
self.init_method_std = init_method_std
self.initializer_range = initializer_range
# test configs
self.test_data_seq_len = test_data_seq_len
self.inference_length = test_data_test_len
if autoregressive_step_list is None:
autoregressive_step_list = [2, 4, 1]
self.autoregressive_step_list = autoregressive_step_list
self.use_cache = True
super().__init__(
**kwargs,
)