File size: 9,852 Bytes
b1e036f
bb7d52f
b1e036f
bb7d52f
b1e036f
 
 
bb7d52f
b1e036f
bb7d52f
b1e036f
 
bb7d52f
b1e036f
bb7d52f
 
 
b1e036f
bb7d52f
b1e036f
 
bb7d52f
b1e036f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb7d52f
 
 
b1e036f
 
303bbc0
 
b1e036f
 
303bbc0
 
b1e036f
303bbc0
b1e036f
 
303bbc0
 
b1e036f
 
303bbc0
 
 
 
b1e036f
303bbc0
 
 
bb7d52f
303bbc0
b1e036f
 
303bbc0
 
b1e036f
 
 
 
303bbc0
 
 
 
 
 
 
 
 
 
 
b1e036f
 
bb7d52f
 
303bbc0
 
 
b1e036f
 
 
303bbc0
b1e036f
 
 
303bbc0
 
 
 
 
b1e036f
 
 
303bbc0
 
 
 
 
 
 
b1e036f
303bbc0
 
 
b1e036f
 
303bbc0
 
b1e036f
 
303bbc0
b1e036f
 
 
303bbc0
 
 
 
 
 
 
 
 
 
 
bb7d52f
303bbc0
bb7d52f
b1e036f
 
 
bb7d52f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
"""
Configuration class for FalconTST model.

This module defines the configuration for FalconTST, a large-scale time series foundation model
that utilizes Mixture of Experts (MoE) architecture with multiple patch tokenizers.
"""

from typing import List, Optional, Union
from transformers import PretrainedConfig
import torch


class FalconTSTConfig(PretrainedConfig):
    """
    Configuration class for FalconTST model.
    
    FalconTST is a time series foundation model that uses Mixture of Experts architecture
    with multiple patch tokenizers for efficient time series forecasting.
    
    This configuration inherits from [`PretrainedConfig`] and can be used to control the model
    output. Read the documentation from [`PretrainedConfig`] for more information.
    
    Args:
        hidden_size (`int`, *optional*, defaults to 1024):
            Dimensionality of the encoder layers and the pooler layer.
        ffn_hidden_size (`int`, *optional*, defaults to 4096):
            Dimensionality of the feed-forward networks in the transformer layers.
        seq_length (`int`, *optional*, defaults to 2880):
            Maximum sequence length that the model can handle.
        add_bias_linear (`bool`, *optional*, defaults to `False`):
            Whether to add bias in linear layers.
        rope_theta (`int`, *optional*, defaults to 10000):
            The base period of the RoPE embeddings.
        num_hidden_layers (`int`, *optional*, defaults to 3):
            Number of hidden layers in the transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 16):
            Number of attention heads for each attention layer in the transformer encoder.
        mask_pad_value (`float`, *optional*, defaults to 255.0):
            Value used for padding/masking in input sequences.
        expert_num_layers (`int`, *optional*, defaults to 4):
            Number of transformer layers within each expert.
        shared_patch_size (`int`, *optional*, defaults to 64):
            Size of patches for the shared expert.
        patch_size_list (`List[int]`, *optional*, defaults to [96, 64, 48, 24]):
            List of patch sizes for different experts.
        multi_forecast_head_list (`List[int]`, *optional*, defaults to [24, 96, 336]):
            List of forecast lengths for multi-head prediction.
        is_revin (`bool`, *optional*, defaults to `True`):
            Whether to use RevIN (Reversible Instance Normalization).
        params_dtype (`str`, *optional*, defaults to "bfloat16"):
            Data type for model parameters.
        use_cpu_initialization (`bool`, *optional*, defaults to `False`):
            Whether to initialize model parameters on CPU.
        rotary_interleaved (`bool`, *optional*, defaults to `False`):
            Whether to use interleaved rotary position embeddings.
        do_expert_forecast (`bool`, *optional*, defaults to `True`):
            Whether experts perform forecasting.
        residual_backcast (`bool`, *optional*, defaults to `True`):
            Whether to use residual connections for backcast.
        do_base_forecast (`bool`, *optional*, defaults to `False`):
            Whether to use base forecasting.
        heterogeneous_moe_layer (`bool`, *optional*, defaults to `True`):
            Whether to use heterogeneous MoE layers.
        test_data_seq_len (`int`, *optional*, defaults to 2880):
            Sequence length for test data.
        test_data_test_len (`int`, *optional*, defaults to 720):
            Test length for test data.
        autoregressive_step_list (`List[int]`, *optional*, defaults to [2, 4, 1]):
            List of autoregressive steps for different forecast heads.
        multi_forecast_head_type (`str`, *optional*, defaults to "single"):
            Type of multi-forecast head aggregation.
        num_experts (`int`, *optional*, defaults to 4):
            Number of experts in the MoE layer.
        moe_router_topk (`int`, *optional*, defaults to 2):
            Number of top experts to route each token to.
        moe_ffn_hidden_size (`int`, *optional*, defaults to 4096):
            Hidden size for MoE feed-forward networks.
        moe_shared_expert_intermediate_size (`int`, *optional*, defaults to 4096):
            Intermediate size for shared experts.
        init_method_std (`float`, *optional*, defaults to 0.06):
            Standard deviation for weight initialization.
        initializer_range (`float`, *optional*, defaults to 0.02):
            Range for weight initialization.
        moe_router_enable_expert_bias (`bool`, *optional*, defaults to `False`):
            Whether to enable expert bias in routing.
        moe_expert_final_layernorm (`bool`, *optional*, defaults to `True`):
            Whether to apply layer normalization at the end of each expert.
        transformer_input_layernorm (`bool`, *optional*, defaults to `True`):
            Whether to apply layer normalization to transformer inputs.
        moe_router_pre_softmax (`bool`, *optional*, defaults to `True`):
            Whether to apply softmax before routing.
        q_layernorm (`bool`, *optional*, defaults to `False`):
            Whether to apply layer normalization to query vectors.
        k_layernorm (`bool`, *optional*, defaults to `False`):
            Whether to apply layer normalization to key vectors.
        moe_router_score_function (`str`, *optional*, defaults to "softmax"):
            Score function for MoE routing ("softmax" or "sigmoid").
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether to tie word embeddings.
    """
    
    model_type = "FalconTST"
    
    def __init__(
        self,

        # model configs
        add_bias_linear: bool = False,
        num_hidden_layers: int = 3,
        hidden_size: int = 1024,
        ffn_hidden_size: int = 4096,
        num_attention_heads: int = 16,
        seq_length: int = 2880,
        mask_pad_value: float = 255.0,
        is_revin: bool = True,
        shared_patch_size: int = 32,
        patch_size_list: Optional[List[int]] = None,
        residual_backcast: bool = True,
        do_base_forecast: bool = False,
        do_expert_forecast: bool = True,
        heterogeneous_moe_layer: bool = False,
        expert_num_layers: int = 4,
        multi_forecast_head_list: Optional[List[int]] = None,
        multi_forecast_head_type: str = "single",
        rope_theta: int = 1000000,
        rotary_interleaved: bool = False,
        block_input_layernorm: bool = True,

        # moe configs
        num_experts: int = 4,
        moe_router_topk: int = 2,
        moe_router_pre_softmax: bool = True,
        moe_router_score_function: str = "softmax",
        moe_ffn_hidden_size: int = 4096,
        moe_shared_expert_intermediate_size: int = 4096,
        moe_router_enable_expert_bias: bool = False,
        moe_expert_final_layernorm: bool = True,

        # initial configs
        use_cpu_initialization: bool = False,
        init_method_std: float = 0.06,
        initializer_range: float = 0.02,

        # test configs
        test_data_seq_len: int = 2880,
        test_data_test_len: int = 720,
        autoregressive_step_list: Optional[List[int]] = None,
        
        **kwargs,
    ):
        """Initialize FalconTST configuration."""
        
        # model configs
        self.add_bias_linear = add_bias_linear
        self.num_hidden_layers = num_hidden_layers
        self.hidden_size = hidden_size
        self.ffn_hidden_size = ffn_hidden_size
        self.num_attention_heads = num_attention_heads
        self.kv_channels = self.hidden_size // self.num_attention_heads
        self.seq_length = seq_length
        self.mask_pad_value = mask_pad_value
        self.is_revin = is_revin
        self.shared_patch_size = shared_patch_size
        if patch_size_list is None:
            patch_size_list = [96, 64, 48, 24]
        self.patch_size_list = patch_size_list
        self.residual_backcast = residual_backcast
        self.do_base_forecast = do_base_forecast
        self.do_expert_forecast = do_expert_forecast
        self.heterogeneous_moe_layer = heterogeneous_moe_layer
        self.expert_num_layers = expert_num_layers
        if multi_forecast_head_list is None:
            multi_forecast_head_list = [24, 96, 336]
        self.multi_forecast_head_list = multi_forecast_head_list
        self.pred_length = max(self.multi_forecast_head_list)
        self.multi_forecast_head_type = multi_forecast_head_type
        self.rotary_base = rope_theta
        self.rotary_interleaved = rotary_interleaved
        self.block_input_layernorm = block_input_layernorm
        
        # moe configs
        self.num_moe_experts = num_experts
        self.moe_router_topk = moe_router_topk
        self.moe_router_input_size = self.seq_length
        self.moe_router_pre_softmax = moe_router_pre_softmax
        self.moe_router_score_function = moe_router_score_function
        self.moe_ffn_hidden_size = moe_ffn_hidden_size
        self.moe_shared_expert_intermediate_size = moe_shared_expert_intermediate_size
        self.moe_router_enable_expert_bias = moe_router_enable_expert_bias
        self.moe_expert_final_layernorm = moe_expert_final_layernorm

        # initial configs
        self.use_cpu_initialization = use_cpu_initialization
        self.init_method_std = init_method_std
        self.initializer_range = initializer_range

        # test configs
        self.test_data_seq_len = test_data_seq_len
        self.inference_length = test_data_test_len
        if autoregressive_step_list is None:
            autoregressive_step_list = [2, 4, 1]
        self.autoregressive_step_list = autoregressive_step_list
        
        self.use_cache = True
        
        super().__init__(
            **kwargs,
        )