nosql-identifier-distilbert

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1660
  • Accuracy: 0.95

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 40 0.4882 0.875
No log 2.0 80 0.2036 0.975
No log 3.0 120 0.1521 0.975
No log 4.0 160 0.2719 0.875
No log 5.0 200 0.0980 0.975
No log 6.0 240 0.1752 0.95
No log 7.0 280 0.3715 0.9
No log 8.0 320 0.1640 0.95
No log 9.0 360 0.1756 0.95
No log 10.0 400 0.1386 0.975
No log 11.0 440 0.2747 0.95
No log 12.0 480 0.2302 0.95
0.2758 13.0 520 0.2518 0.95
0.2758 14.0 560 0.1722 0.95
0.2758 15.0 600 0.1660 0.95

Framework versions

  • Transformers 4.31.0
  • Pytorch 1.12.1+cu113
  • Datasets 2.13.1
  • Tokenizers 0.11.0
Downloads last month
128
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for ankush-003/nosql-identifier-distilbert

Finetuned
(7323)
this model