|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- anithasoma/refined_en_te |
|
language: |
|
- en |
|
- te |
|
metrics: |
|
- bleu |
|
- sacrebleu |
|
base_model: |
|
- facebook/nllb-200-distilled-600M |
|
pipeline_tag: translation |
|
library_name: transformers |
|
tags: |
|
- text-generation |
|
- translation |
|
- fine-tuned-model |
|
- colloquial-language |
|
- telugu |
|
- machine-translation |
|
--- |
|
# NLLB-200 Fine-Tuned for Colloquial Telugu |
|
|
|
## Model Description |
|
This model is a fine-tuned version of the [NLLB-200 (Distilled 600M)](https://huggingface.co/facebook/nllb-200-distilled-600M) designed for translating English sentences into colloquial Telugu. It has been optimized to better capture informal and conversational nuances. |
|
|
|
## Model Details |
|
- **Model Name:** anithasoma/nllb-finetuned-telugu |
|
- **Base Model:** facebook/nllb-200-distilled-600M |
|
- **Fine-Tuned By:** [anithasoma](https://huggingface.co/anithasoma) |
|
- **Languages:** English β Telugu (colloquial) |
|
- **Framework:** Transformers (π€ Hugging Face) |
|
- |
|
## π Run the Model on Google Colab |
|
|
|
[](https://colab.research.google.com/drive/1CiuywF2xzdzFH7jvQ7UIrBo4tI9FI9Nf?usp=sharing) |
|
|
|
Click the badge above to launch the model in Google Colab! |
|
|
|
## Training Details |
|
- **Dataset:** anithasoma/refined_en_te |
|
- **Training Environment:** Google Colab with NVIDIA GPU. |
|
- **Fine-Tuning Method:** LoRA + PEFT (Parameter Efficient Fine-Tuning) |
|
- **Epochs:** Adjusted based on validation loss. |
|
- **Metrics:** BLEU Score, SacreBLEU Score Perplexity, Human Evaluation. |
|
|
|
## Evaluation Metrics |
|
|
|
The model was evaluated using the BLEU and SacreBLEU metrics: |
|
|
|
- **BLEU Score:** 43.12 |
|
- **SacreBLEU Score:** 43.12 |
|
|
|
|
|
## How to Use |
|
You can use this model in Python with the `transformers` library: |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("anithasoma/nllb-finetuned-telugu") |
|
model = AutoModelForSeq2SeqLM.from_pretrained("anithasoma/nllb-finetuned-telugu") |
|
|
|
def translate(text): |
|
inputs = tokenizer(text, return_tensors="pt") |
|
outputs = model.generate(**inputs) |
|
return tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
print(translate("Hello, how are you?")) |
|
``` |
|
|
|
## Model Card |
|
### Intended Use |
|
This model is intended for generating colloquial Telugu translations from English text, improving conversational AI, and enhancing informal communication applications. |
|
|
|
### Limitations |
|
- May not perform well on formal or domain-specific text. |
|
- Can sometimes produce literal rather than context-aware translations. |
|
|
|
### License |
|
This model is licensed under the [Apache 2.0 License](https://www.apache.org/licenses/LICENSE-2.0). |
|
|
|
## Contributors |
|
Developed by **[anithasoma](https://huggingface.co/anithasoma)** as part of the SAWiT AI Hackathon. |
|
|
|
--- |
|
*For feedback or collaboration, reach out via Hugging Face!* π |