|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: group1_non_all_zero |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# group1_non_all_zero |
|
|
|
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7437 |
|
- Precision: 0.0149 |
|
- Recall: 0.1076 |
|
- F1: 0.0262 |
|
- Accuracy: 0.9260 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 15 | 1.0746 | 0.0007 | 0.0633 | 0.0013 | 0.4145 | |
|
| No log | 2.0 | 30 | 0.8623 | 0.0023 | 0.1139 | 0.0045 | 0.6250 | |
|
| No log | 3.0 | 45 | 0.7242 | 0.0024 | 0.0696 | 0.0046 | 0.7334 | |
|
| No log | 4.0 | 60 | 0.6181 | 0.0037 | 0.0696 | 0.0070 | 0.8030 | |
|
| No log | 5.0 | 75 | 0.6489 | 0.0090 | 0.1329 | 0.0169 | 0.8282 | |
|
| No log | 6.0 | 90 | 0.6538 | 0.0091 | 0.1266 | 0.0170 | 0.8445 | |
|
| No log | 7.0 | 105 | 0.6189 | 0.0103 | 0.1013 | 0.0188 | 0.8893 | |
|
| No log | 8.0 | 120 | 0.6328 | 0.0101 | 0.1013 | 0.0183 | 0.8917 | |
|
| No log | 9.0 | 135 | 0.6561 | 0.0119 | 0.1076 | 0.0215 | 0.9099 | |
|
| No log | 10.0 | 150 | 0.6537 | 0.0152 | 0.1139 | 0.0267 | 0.9265 | |
|
| No log | 11.0 | 165 | 0.6939 | 0.0182 | 0.1139 | 0.0314 | 0.9385 | |
|
| No log | 12.0 | 180 | 0.7481 | 0.0113 | 0.0949 | 0.0203 | 0.9103 | |
|
| No log | 13.0 | 195 | 0.7242 | 0.0150 | 0.1203 | 0.0267 | 0.9209 | |
|
| No log | 14.0 | 210 | 0.7553 | 0.0140 | 0.1013 | 0.0247 | 0.9229 | |
|
| No log | 15.0 | 225 | 0.7437 | 0.0149 | 0.1076 | 0.0262 | 0.9260 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.30.0 |
|
- Pytorch 2.2.2+cu121 |
|
- Datasets 2.19.0 |
|
- Tokenizers 0.13.3 |
|
|