BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("anikulkar/bge-base-financial-matryoshka")
# Run inference
sentences = [
'We recognize gains and losses on pension and postretirement plan assets and obligations immediately in Other income (expense) - net in our consolidated statements of income.',
'Where are gains and losses on pension and postretirement plan assets and obligations recognized in financial statements?',
'What is the total amount of property, plant, and equipment, net, reported by the company for the fiscal year 2023?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6829 |
cosine_accuracy@3 | 0.8229 |
cosine_accuracy@5 | 0.86 |
cosine_accuracy@10 | 0.9057 |
cosine_precision@1 | 0.6829 |
cosine_precision@3 | 0.2743 |
cosine_precision@5 | 0.172 |
cosine_precision@10 | 0.0906 |
cosine_recall@1 | 0.6829 |
cosine_recall@3 | 0.8229 |
cosine_recall@5 | 0.86 |
cosine_recall@10 | 0.9057 |
cosine_ndcg@10 | 0.7961 |
cosine_mrr@10 | 0.7608 |
cosine_map@100 | 0.7647 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6843 |
cosine_accuracy@3 | 0.8229 |
cosine_accuracy@5 | 0.8557 |
cosine_accuracy@10 | 0.9014 |
cosine_precision@1 | 0.6843 |
cosine_precision@3 | 0.2743 |
cosine_precision@5 | 0.1711 |
cosine_precision@10 | 0.0901 |
cosine_recall@1 | 0.6843 |
cosine_recall@3 | 0.8229 |
cosine_recall@5 | 0.8557 |
cosine_recall@10 | 0.9014 |
cosine_ndcg@10 | 0.794 |
cosine_mrr@10 | 0.7594 |
cosine_map@100 | 0.7636 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.68 |
cosine_accuracy@3 | 0.8114 |
cosine_accuracy@5 | 0.85 |
cosine_accuracy@10 | 0.8943 |
cosine_precision@1 | 0.68 |
cosine_precision@3 | 0.2705 |
cosine_precision@5 | 0.17 |
cosine_precision@10 | 0.0894 |
cosine_recall@1 | 0.68 |
cosine_recall@3 | 0.8114 |
cosine_recall@5 | 0.85 |
cosine_recall@10 | 0.8943 |
cosine_ndcg@10 | 0.7889 |
cosine_mrr@10 | 0.755 |
cosine_map@100 | 0.7594 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6571 |
cosine_accuracy@3 | 0.7943 |
cosine_accuracy@5 | 0.8343 |
cosine_accuracy@10 | 0.8886 |
cosine_precision@1 | 0.6571 |
cosine_precision@3 | 0.2648 |
cosine_precision@5 | 0.1669 |
cosine_precision@10 | 0.0889 |
cosine_recall@1 | 0.6571 |
cosine_recall@3 | 0.7943 |
cosine_recall@5 | 0.8343 |
cosine_recall@10 | 0.8886 |
cosine_ndcg@10 | 0.773 |
cosine_mrr@10 | 0.7361 |
cosine_map@100 | 0.7403 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6186 |
cosine_accuracy@3 | 0.76 |
cosine_accuracy@5 | 0.8 |
cosine_accuracy@10 | 0.8657 |
cosine_precision@1 | 0.6186 |
cosine_precision@3 | 0.2533 |
cosine_precision@5 | 0.16 |
cosine_precision@10 | 0.0866 |
cosine_recall@1 | 0.6186 |
cosine_recall@3 | 0.76 |
cosine_recall@5 | 0.8 |
cosine_recall@10 | 0.8657 |
cosine_ndcg@10 | 0.7409 |
cosine_mrr@10 | 0.7013 |
cosine_map@100 | 0.7062 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 6,300 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 8 tokens
- mean: 45.24 tokens
- max: 512 tokens
- min: 9 tokens
- mean: 20.71 tokens
- max: 45 tokens
- Samples:
positive anchor Changes in Costs. Our costs are subject to fluctuations, particularly due to changes in commodity and input material prices, transportation costs, other broader inflationary impacts and our own productivity efforts. We have significant exposures to certain commodities and input materials, in particular certain oil-derived materials like resins and paper-based materials like pulp. Volatility in the market price of these commodities and input materials has a direct impact on our costs. Disruptions in our manufacturing, supply and distribution operations due to energy shortages, natural disasters, labor or freight constraints have impacted our costs and could do so in the future. New or increased legal or regulatory requirements, along with initiatives to meet our sustainability goals, could also result in increased costs due to higher material costs and investments in facilities and equipment. We strive to implement, achieve and sustain cost improvement plans, including supply chain optimization and general overhead and workforce optimization. Increased pricing in response to certain inflationary or cost increases may also offset portions of the cost impacts; however, such price increases may impact product consumption. If we are unable to manage cost impacts through pricing actions and consistent productivity improvements, it may adversely impact our net sales, gross margin, operating margin, net earnings and cash flows.
How did Procter & Gamble manage the fluctuations in costs, particularly related to commodities and input materials?
As of October 1, 2023 we had ¥5 billion, or $33.5 million, of borrowings outstanding under these credit facilities.
How much was borrowed under the Japanese yen-denominated credit facilities as of October 1, 2023?
AutoZone sells automotive hard parts, maintenance items, accessories and non-automotive products through www.autozone.com, and commercial customers can make purchases through www.autozonepro.com. Additionally, the ALLDATA brand of automotive diagnostic, repair, collision and shop management software is sold through www.alldata.com.
What online platforms does AutoZone use for selling automotive products and services?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Falseload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Falselocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
---|---|---|---|---|---|---|---|
0.8122 | 10 | 1.5647 | - | - | - | - | - |
0.9746 | 12 | - | 0.7160 | 0.7404 | 0.7515 | 0.6797 | 0.7533 |
1.6244 | 20 | 0.6629 | - | - | - | - | - |
1.9492 | 24 | - | 0.7340 | 0.7582 | 0.7611 | 0.6996 | 0.7603 |
2.4365 | 30 | 0.4811 | - | - | - | - | - |
2.9239 | 36 | - | 0.7403 | 0.759 | 0.7638 | 0.7056 | 0.7646 |
3.2487 | 40 | 0.4046 | - | - | - | - | - |
3.8985 | 48 | - | 0.7403 | 0.7594 | 0.7636 | 0.7062 | 0.7647 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.2
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 5
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for anikulkar/bge-base-financial-matryoshka
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.683
- Cosine Accuracy@3 on dim 768self-reported0.823
- Cosine Accuracy@5 on dim 768self-reported0.860
- Cosine Accuracy@10 on dim 768self-reported0.906
- Cosine Precision@1 on dim 768self-reported0.683
- Cosine Precision@3 on dim 768self-reported0.274
- Cosine Precision@5 on dim 768self-reported0.172
- Cosine Precision@10 on dim 768self-reported0.091
- Cosine Recall@1 on dim 768self-reported0.683
- Cosine Recall@3 on dim 768self-reported0.823