|
--- |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- bleu |
|
model-index: |
|
- name: es_fi_all_quy |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# es_fi_all_quy |
|
|
|
This model is a fine-tuned version of [nouman-10/es_fi_all_quy](https://huggingface.co/nouman-10/es_fi_all_quy) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4779 |
|
- Bleu: 1.6745 |
|
- Chrf: 32.4462 |
|
- Gen Len: 42.4789 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 20 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu | Chrf | Gen Len | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:|:-------:| |
|
| 0.2977 | 0.09 | 1000 | 0.4895 | 1.4944 | 31.8832 | 41.2596 | |
|
| 0.2977 | 0.17 | 2000 | 0.4870 | 1.3779 | 31.419 | 44.5825 | |
|
| 0.2851 | 0.26 | 3000 | 0.4849 | 1.1958 | 30.8243 | 48.3773 | |
|
| 0.2829 | 0.34 | 4000 | 0.4828 | 1.7102 | 31.6821 | 43.6841 | |
|
| 0.2881 | 0.43 | 5000 | 0.4822 | 1.8438 | 32.6924 | 39.0855 | |
|
| 0.2847 | 0.51 | 6000 | 0.4796 | 1.2714 | 31.2343 | 49.8511 | |
|
| 0.2812 | 0.6 | 7000 | 0.4799 | 1.7161 | 32.2005 | 46.3149 | |
|
| 0.2753 | 0.68 | 8000 | 0.4790 | 1.2392 | 32.7687 | 40.1841 | |
|
| 0.282 | 0.77 | 9000 | 0.4804 | 1.3175 | 32.1637 | 41.4537 | |
|
| 0.2743 | 0.85 | 10000 | 0.4784 | 1.4782 | 32.5727 | 42.0936 | |
|
| 0.2719 | 0.94 | 11000 | 0.4781 | 1.5137 | 31.9548 | 44.4477 | |
|
| 0.2668 | 1.02 | 12000 | 0.4797 | 1.1151 | 31.5602 | 43.9336 | |
|
| 0.2638 | 1.11 | 13000 | 0.4779 | 1.6745 | 32.4462 | 42.4789 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.28.1 |
|
- Pytorch 2.0.0+cu117 |
|
- Datasets 2.11.0 |
|
- Tokenizers 0.13.3 |
|
|