|
import torch |
|
from torchvision.utils import make_grid |
|
|
|
import numpy as np |
|
import math |
|
import cv2 |
|
|
|
|
|
|
|
def tensor2img(tensor, rgb2bgr=True, out_type=np.uint8, min_max=(0, 1)): |
|
"""Convert torch Tensors into image numpy arrays. |
|
|
|
After clamping to [min, max], values will be normalized to [0, 1]. |
|
|
|
Args: |
|
tensor (Tensor or list[Tensor]): Accept shapes: |
|
1) 4D mini-batch Tensor of shape (B x 3/1 x H x W); |
|
2) 3D Tensor of shape (3/1 x H x W); |
|
3) 2D Tensor of shape (H x W). |
|
Tensor channel should be in RGB order. |
|
rgb2bgr (bool): Whether to change rgb to bgr. |
|
out_type (numpy type): output types. If ``np.uint8``, transform outputs |
|
to uint8 type with range [0, 255]; otherwise, float type with |
|
range [0, 1]. Default: ``np.uint8``. |
|
min_max (tuple[int]): min and max values for clamp. |
|
|
|
Returns: |
|
(Tensor or list): 3D ndarray of shape (H x W x C) OR 2D ndarray of |
|
shape (H x W). The channel order is BGR. |
|
""" |
|
if not (torch.is_tensor(tensor) or (isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))): |
|
raise TypeError(f'tensor or list of tensors expected, got {type(tensor)}') |
|
|
|
if torch.is_tensor(tensor): |
|
tensor = [tensor] |
|
result = [] |
|
for _tensor in tensor: |
|
_tensor = _tensor.squeeze(0).float().detach().cpu().clamp_(*min_max) |
|
_tensor = (_tensor - min_max[0]) / (min_max[1] - min_max[0]) |
|
|
|
n_dim = _tensor.dim() |
|
if n_dim == 4: |
|
img_np = make_grid(_tensor, nrow=int(math.sqrt(_tensor.size(0))), normalize=False).numpy() |
|
img_np = img_np.transpose(1, 2, 0) |
|
if rgb2bgr: |
|
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR) |
|
elif n_dim == 3: |
|
img_np = _tensor.numpy() |
|
img_np = img_np.transpose(1, 2, 0) |
|
if img_np.shape[2] == 1: |
|
img_np = np.squeeze(img_np, axis=2) |
|
else: |
|
if rgb2bgr: |
|
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR) |
|
elif n_dim == 2: |
|
img_np = _tensor.numpy() |
|
else: |
|
raise TypeError(f'Only support 4D, 3D or 2D tensor. But received with dimension: {n_dim}') |
|
if out_type == np.uint8: |
|
|
|
img_np = (img_np * 255.0).round() |
|
img_np = img_np.astype(out_type) |
|
result.append(img_np) |
|
if len(result) == 1: |
|
result = result[0] |
|
return result |
|
|
|
|
|
def create_visualization(data): |
|
img = None |
|
for k, v in data.items(): |
|
if v is not None: |
|
size = v.shape[0] |
|
v = cv2.copyMakeBorder(v, 0, int(size * 0.2), 0, 0, cv2.BORDER_CONSTANT, None, value=0) |
|
img = v if img is None else np.hstack((img, v)) |
|
|
|
fontScale = v.shape[0] * 0.002 |
|
cv2.putText( |
|
img, |
|
k, |
|
(img.shape[1] - size + int(size * 0.1), img.shape[0] - int(size * 0.1)), |
|
cv2.FONT_HERSHEY_SIMPLEX, |
|
fontScale, |
|
(255, 255, 255), |
|
1, |
|
cv2.LINE_AA |
|
) |
|
|
|
return img |
|
|