|
import numpy as np |
|
import torch |
|
import torch.distributed as dist |
|
import os |
|
import random |
|
import cv2 |
|
|
|
from utils.commons.hparams import hparams |
|
from utils.commons.tensor_utils import tensors_to_scalars, convert_to_np, move_to_cuda |
|
from utils.nn.model_utils import not_requires_grad, num_params |
|
from utils.commons.dataset_utils import data_loader |
|
from utils.nn.schedulers import NoneSchedule |
|
from utils.commons.ckpt_utils import load_ckpt, get_last_checkpoint, restore_weights, restore_opt_state |
|
|
|
from data_util.face3d_helper import Face3DHelper |
|
from deep_3drecon.secc_renderer import SECC_Renderer |
|
from tasks.os_avatar.loss_utils.vgg19_loss import VGG19Loss |
|
from tasks.os_avatar.secc_img2plane_task import SECC_Img2PlaneEG3DTask |
|
import lpips |
|
|
|
from tasks.os_avatar.dataset_utils.motion2video_dataset import Motion2Video_Dataset |
|
|
|
from modules.eg3ds.models.triplane import TriPlaneGenerator |
|
from modules.eg3ds.models.dual_discriminator import DualDiscriminator |
|
from modules.real3d.secc_img2plane_torso import OSAvatarSECC_Img2plane_Torso |
|
|
|
from modules.eg3ds.torch_utils.ops import conv2d_gradfix |
|
from modules.eg3ds.torch_utils.ops import upfirdn2d |
|
from modules.eg3ds.models.dual_discriminator import filtered_resizing |
|
|
|
|
|
class ScheduleForLM3DImg2PlaneEG3D(NoneSchedule): |
|
def __init__(self, optimizer, lr, lr_d, warmup_updates=0): |
|
self.optimizer = optimizer |
|
self.constant_lr = self.lr = lr |
|
self.lr_d = lr_d |
|
self.warmup_updates = warmup_updates |
|
self.step(0) |
|
|
|
def step(self, num_updates): |
|
constant_lr = self.constant_lr |
|
if self.warmup_updates > 0 and num_updates <= self.warmup_updates: |
|
warmup = min(num_updates / self.warmup_updates, 1.0) |
|
self.lr = max(constant_lr * warmup, 1e-7) |
|
else: |
|
self.lr = constant_lr |
|
|
|
for optim_i in range(len(self.optimizer)-1): |
|
self.optimizer[optim_i].param_groups[0]['lr'] = max(1e-6, self.lr * (0.5) ** (num_updates // 50_000)) |
|
self.optimizer[-1].param_groups[0]['lr'] = max(1e-6, self.lr_d * (0.5) ** (num_updates // 50_000)) |
|
return self.lr |
|
|
|
|
|
class SECC_Img2PlaneEG3D_TorsoTask(SECC_Img2PlaneEG3DTask): |
|
def build_model(self): |
|
self.eg3d_model = TriPlaneGenerator() |
|
load_ckpt(self.eg3d_model, hparams['pretrained_eg3d_ckpt'], strict=True) |
|
|
|
self.model = OSAvatarSECC_Img2plane_Torso() |
|
self.disc = DualDiscriminator() |
|
|
|
assert hparams.get("img2plane_backbone_mode", "composite") == "composite" |
|
|
|
assert hparams.get('init_from_ckpt', '') != '', "set init_from_ckpt with your secc2plane or secc2plane_torso ckpt!" |
|
ckpt_dir = hparams.get('init_from_ckpt', '') |
|
load_ckpt(self.model.cano_img2plane_backbone, ckpt_dir, model_name='model.cano_img2plane_backbone', strict=True) |
|
load_ckpt(self.model.secc_img2plane_backbone, ckpt_dir, model_name='model.secc_img2plane_backbone', strict=True) |
|
load_ckpt(self.model.decoder, ckpt_dir, model_name='model.decoder', strict=True) |
|
load_ckpt(self.model.superresolution, ckpt_dir, model_name='model.superresolution', strict=False) |
|
load_ckpt(self.disc, ckpt_dir, model_name='disc', strict=True) |
|
|
|
secc_img2plane_ckpt_dir = hparams.get('reload_head_ckpt', '') |
|
if secc_img2plane_ckpt_dir != '': |
|
load_ckpt(self.model.cano_img2plane_backbone, secc_img2plane_ckpt_dir, model_name='model.cano_img2plane_backbone', strict=True) |
|
load_ckpt(self.model.secc_img2plane_backbone, secc_img2plane_ckpt_dir, model_name='model.secc_img2plane_backbone', strict=True) |
|
load_ckpt(self.model.decoder, secc_img2plane_ckpt_dir, model_name='model.decoder', strict=True) |
|
|
|
|
|
self.upsample_params = [p for p in self.model.superresolution.parameters() if p.requires_grad] |
|
self.disc_params = [p for k, p in self.disc.named_parameters() if p.requires_grad] |
|
|
|
if hparams.get("add_ffhq_singe_disc", False): |
|
self.ffhq_disc = DualDiscriminator() |
|
self.disc_params += [p for k, p in self.ffhq_disc.named_parameters() if p.requires_grad] |
|
eg3d_dir = 'checkpoints/geneface2_ckpts/eg3d_baseline_run2' |
|
load_ckpt(self.ffhq_disc, eg3d_dir, model_name='disc', strict=True) |
|
|
|
self.secc_renderer = SECC_Renderer(512) |
|
self.face3d_helper = Face3DHelper(use_gpu=False) |
|
return self.model |
|
|
|
def on_train_start(self): |
|
print("==============================") |
|
num_params(self.model, model_name="Generator") |
|
for n, m in self.model.named_children(): |
|
num_params(m, model_name="|-- "+n) |
|
print("==============================") |
|
for n, m in self.model.superresolution.named_children(): |
|
num_params(m, model_name="|-- "+ "SR module --"+n) |
|
print("==============================") |
|
num_params(self.disc, model_name="Discriminator") |
|
for n, m in self.disc.named_children(): |
|
num_params(m, model_name="|-- "+n) |
|
print("==============================") |
|
|
|
def build_optimizer(self, model): |
|
self.optimizer_gen = optimizer_gen = torch.optim.Adam( |
|
self.upsample_params, |
|
lr=hparams['lr_g'], |
|
betas=(hparams['optimizer_adam_beta1_g'], hparams['optimizer_adam_beta2_g']) |
|
) |
|
|
|
mb_ratio_d = hparams['reg_interval_d'] / (hparams['reg_interval_d'] + 1) |
|
self.optimizer_disc = optimizer_disc = torch.optim.Adam( |
|
self.disc_params, |
|
lr=hparams['lr_d'] * mb_ratio_d, |
|
betas=(hparams['optimizer_adam_beta1_d'] ** mb_ratio_d, hparams['optimizer_adam_beta2_d'] ** mb_ratio_d)) |
|
optimizers = [optimizer_gen, optimizer_disc] |
|
return optimizers |
|
|
|
def build_scheduler(self, optimizer): |
|
mb_ratio_d = hparams['reg_interval_d'] / (hparams['reg_interval_d'] + 1) |
|
return ScheduleForLM3DImg2PlaneEG3D(optimizer, hparams['lr_g'], hparams['lr_d'] * mb_ratio_d, hparams['warmup_updates']) |
|
|
|
def prepare_batch(self, batch): |
|
out_batch = super().prepare_batch(batch) |
|
|
|
if hparams.get("add_ffhq_singe_disc", False) and (self.global_step+1) % 4 == 0: |
|
batch_size = batch['th1kh_ref_cameras'].shape[0] |
|
ffhq_img_lst = [] |
|
ffhq_head_img_dir = '/mnt/bn/sa-ag-data/yezhenhui/datasets/raw/FFHQ/com_imgs' |
|
while len(ffhq_img_lst) < batch_size: |
|
idx = random.randint(0, 70000-1) |
|
img_name = f"{ffhq_head_img_dir}/{format(idx,'05d')}.png" |
|
if os.path.exists(img_name): |
|
img = cv2.imread(img_name) |
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) |
|
img = img / 127.5 - 1 |
|
img = torch.tensor(img, dtype=batch['th1kh_ref_cameras'].dtype, device=batch['th1kh_ref_cameras'].device) |
|
ffhq_img_lst.append(img) |
|
ffhq_head_img = torch.stack(ffhq_img_lst).permute(0, 3, 1, 2) |
|
out_batch['ffhq_com_imgs'] = ffhq_head_img |
|
out_batch['ffhq_com_imgs_raw'] = filtered_resizing(out_batch['ffhq_head_imgs'], size=hparams['neural_rendering_resolution'], f=self.resample_filter, filter_mode='antialiased') |
|
|
|
out_batch['th1kh_bg_imgs'] = batch['th1kh_bg_imgs'] |
|
out_batch['th1kh_ref_com_imgs'] = batch['th1kh_ref_com_imgs'] |
|
out_batch['th1kh_tgt_imgs'] = batch['th1kh_mv_com_imgs'] |
|
out_batch['th1kh_ref_segmaps'] = batch['th1kh_ref_segmaps'] |
|
|
|
torso_ref_segout_mode = hparams.get("torso_ref_segout_mode", "torso") |
|
|
|
assert torso_ref_segout_mode in ['full', 'torso_with_bg', 'torso', 'person'] |
|
if torso_ref_segout_mode == 'full': |
|
out_batch['th1kh_ref_torso_imgs'] = batch['th1kh_ref_com_imgs'] |
|
elif torso_ref_segout_mode == 'torso_with_bg': |
|
out_batch['th1kh_ref_torso_imgs'] = batch['th1kh_ref_inpaint_torso_with_com_bg_imgs'] |
|
elif torso_ref_segout_mode == 'torso': |
|
out_batch['th1kh_ref_torso_imgs'] = batch['th1kh_ref_inpaint_torso_imgs'] |
|
elif torso_ref_segout_mode == 'person': |
|
out_batch['th1kh_ref_torso_imgs'] = batch['th1kh_ref_person_imgs'] |
|
else: raise NotImplementedError() |
|
|
|
ref_id, ref_exp, ref_euler, ref_trans = batch['th1kh_ref_ids'], batch['th1kh_ref_exps'], batch['th1kh_ref_eulers'], batch['th1kh_ref_trans'] |
|
ref_kp = self.face3d_helper.reconstruct_lm2d(ref_id, ref_exp, ref_euler, ref_trans) |
|
ref_kp = (ref_kp - 0.5) * 2 |
|
ref_kp = torch.cat([ref_kp, torch.zeros([ref_kp.shape[0], ref_kp.shape[1], 1]).to(ref_kp.device)], dim=-1) |
|
|
|
mv_id, mv_exp, mv_euler, mv_trans = batch['th1kh_mv_ids'], batch['th1kh_mv_exps'], batch['th1kh_mv_eulers'], batch['th1kh_mv_trans'] |
|
mv_kp = self.face3d_helper.reconstruct_lm2d(mv_id, mv_exp, mv_euler, mv_trans) |
|
mv_kp = (mv_kp - 0.5) * 2 |
|
mv_kp = torch.cat([mv_kp, torch.zeros([mv_kp.shape[0], mv_kp.shape[1], 1]).to(mv_kp.device)], dim=-1) |
|
|
|
out_batch.update({ |
|
'th1kh_ref_kp': ref_kp, |
|
'th1kh_mv_kp': mv_kp, |
|
}) |
|
|
|
batch['th1kh_ref_torso_masks'] = self.dilate_mask(batch['th1kh_ref_torso_masks'].float(), ksize=41).long() |
|
out_batch['th1kh_ref_torso_masks'] = batch['th1kh_ref_torso_masks'].bool() |
|
out_batch['th1kh_ref_torso_masks_raw'] = torch.nn.functional.interpolate(batch['th1kh_ref_torso_masks'].unsqueeze(1).float(), size=(128,128), mode='nearest').squeeze(1).bool() |
|
|
|
batch['th1kh_mv_torso_masks'] = self.dilate_mask(batch['th1kh_mv_torso_masks'].float(), ksize=41).long() |
|
out_batch['th1kh_mv_torso_masks'] = batch['th1kh_mv_torso_masks'].bool() |
|
out_batch['th1kh_mv_torso_masks_raw'] = torch.nn.functional.interpolate(batch['th1kh_mv_torso_masks'].unsqueeze(1).float(), size=(128,128), mode='nearest').squeeze(1).bool() |
|
|
|
|
|
return out_batch |
|
|
|
def run_G_th1kh_src2src_image(self, batch): |
|
ret = {} |
|
losses = {} |
|
SRC2SRC_UPDATE_INTERVAL = 4 |
|
if self.global_step % SRC2SRC_UPDATE_INTERVAL != 0: |
|
return losses |
|
|
|
with torch.autograd.profiler.record_function('G_th1kh_ref_forward'): |
|
camera = batch['th1kh_ref_cameras'] |
|
img = batch['th1kh_ref_com_imgs'] |
|
gen_img = self.forward_G(batch['th1kh_ref_head_imgs'], camera, cond={ |
|
'cond_cano': batch['th1kh_cano_secc'], 'cond_src': batch['th1kh_ref_secc'], 'cond_tgt': batch['th1kh_ref_secc'], |
|
'ref_torso_img': batch['th1kh_ref_torso_imgs'], 'bg_img': batch['th1kh_bg_imgs'], |
|
'segmap': batch['th1kh_ref_segmaps'], |
|
'kp_s':batch['th1kh_ref_kp'], 'kp_d': batch['th1kh_ref_kp'], |
|
'target_torso_mask': batch['th1kh_ref_torso_masks_raw'], |
|
}, ret=ret) |
|
if 'losses' in ret: losses.update(ret['losses']) |
|
|
|
losses['G_ref_plane_l1_mean'] = (gen_img['plane'][:,:]).detach().abs().mean() |
|
losses['G_ref_plane_l1_std'] = (gen_img['plane'][:,:]).detach().abs().std() |
|
if hparams.get("masked_error", True): |
|
|
|
|
|
losses['G_th1kh_ref_img_mae'] = self.masked_error_loss(gen_img['image'], img, batch['th1kh_ref_torso_masks'], mode='l1', unmasked_weight=0.5) |
|
losses['G_th1kh_ref_img_lpips'] = self.criterion_lpips(gen_img['image'], img).mean() |
|
else: |
|
losses['G_th1kh_ref_img_mae'] = (gen_img['image'] - img).abs().mean() |
|
losses['G_th1kh_ref_img_lpips'] = self.criterion_lpips(gen_img['image'], img).mean() |
|
|
|
|
|
batch_size = len(gen_img['image']) |
|
lip_mse_loss = 0 |
|
lip_lpips_loss = 0 |
|
for i in range(batch_size): |
|
xmin, xmax, ymin, ymax = batch['th1kh_ref_lip_rects'][i] |
|
lip_tgt_imgs = img[i:i+1,:, ymin:ymax,xmin:xmax].contiguous() |
|
lip_pred_imgs = gen_img['image'][i:i+1,:, ymin:ymax,xmin:xmax].contiguous() |
|
lip_mse_loss = lip_mse_loss + 1/batch_size * (lip_pred_imgs - lip_tgt_imgs).abs().mean() |
|
try: |
|
lip_lpips_loss = lip_lpips_loss + 1/batch_size * self.criterion_lpips(lip_pred_imgs, lip_tgt_imgs).mean() |
|
except: pass |
|
losses['G_th1kh_ref_img_lip_mae'] = lip_mse_loss |
|
losses['G_th1kh_ref_img_lip_lpips'] = lip_lpips_loss |
|
|
|
disc_inp_img = { |
|
'image': gen_img['image'], |
|
'image_raw': gen_img['image_raw'], |
|
} |
|
gen_logits = self.forward_D(disc_inp_img, camera) |
|
losses['G_th1kh_ref_adv'] = torch.nn.functional.softplus(-gen_logits).mean() |
|
if hparams.get("add_ffhq_singe_disc", False): |
|
gen_logits = self.forward_ffhq_D(disc_inp_img, camera) |
|
losses['G_ffhq_ref_adv'] = torch.nn.functional.softplus(-gen_logits).mean() |
|
return losses |
|
|
|
def run_G_th1kh_src2tgt_image(self, batch): |
|
ret = {} |
|
losses = {} |
|
with torch.autograd.profiler.record_function('G_th1kh_mv_forward'): |
|
camera = batch['th1kh_mv_cameras'] |
|
img = batch['th1kh_tgt_imgs'] |
|
gen_img = self.forward_G(batch['th1kh_ref_head_imgs'], camera, cond={ |
|
'cond_cano': batch['th1kh_cano_secc'], 'cond_src': batch['th1kh_ref_secc'], 'cond_tgt': batch['th1kh_mv_secc'], |
|
'ref_torso_img': batch['th1kh_ref_torso_imgs'], 'bg_img': batch['th1kh_bg_imgs'], |
|
'segmap': batch['th1kh_ref_segmaps'], |
|
'kp_s':batch['th1kh_ref_kp'], 'kp_d': batch['th1kh_mv_kp'], |
|
'target_torso_mask': batch['th1kh_mv_torso_masks_raw'], |
|
}, ret=ret) |
|
if 'losses' in ret: losses.update(ret['losses']) |
|
|
|
losses['G_mv_plane_l1_mean'] = (gen_img['plane'][:,:]).detach().abs().mean() |
|
losses['G_mv_plane_l1_std'] = (gen_img['plane'][:,:]).detach().abs().std() |
|
if hparams.get("masked_error", True): |
|
|
|
|
|
losses['G_th1kh_mv_img_mae'] = self.masked_error_loss(gen_img['image'], img, batch['th1kh_mv_torso_masks'], mode='l1', unmasked_weight=0.5) |
|
losses['G_th1kh_mv_img_lpips'] = self.criterion_lpips(gen_img['image'], img).mean() |
|
else: |
|
losses['G_th1kh_mv_img_mae'] = (gen_img['image'] - img).abs().mean() |
|
losses['G_th1kh_mv_img_lpips'] = self.criterion_lpips(gen_img['image'], img).mean() |
|
|
|
|
|
batch_size = len(gen_img['image']) |
|
lip_mse_loss = 0 |
|
lip_lpips_loss = 0 |
|
for i in range(batch_size): |
|
xmin, xmax, ymin, ymax = batch['th1kh_mv_lip_rects'][i] |
|
lip_tgt_imgs = img[i:i+1,:, ymin:ymax,xmin:xmax].contiguous() |
|
lip_pred_imgs = gen_img['image'][i:i+1,:, ymin:ymax,xmin:xmax].contiguous() |
|
lip_mse_loss = lip_mse_loss + 1/batch_size * (lip_pred_imgs - lip_tgt_imgs).abs().mean() |
|
try: |
|
lip_lpips_loss = lip_lpips_loss + 1/batch_size * self.criterion_lpips(lip_pred_imgs, lip_tgt_imgs).mean() |
|
except: pass |
|
losses['G_th1kh_mv_img_lip_mae'] = lip_mse_loss |
|
losses['G_th1kh_mv_img_lip_lpips'] = lip_lpips_loss |
|
|
|
self.gen_tmp_output['th1kh_recon_mv_imgs'] = gen_img['image'].detach() |
|
self.gen_tmp_output['th1kh_recon_mv_imgs_raw'] = gen_img['image_raw'].detach() |
|
disc_inp_img = { |
|
'image': gen_img['image'], |
|
'image_raw': gen_img['image_raw'], |
|
} |
|
gen_logits = self.forward_D(disc_inp_img, camera) |
|
losses['G_th1kh_mv_adv'] = torch.nn.functional.softplus(-gen_logits).mean() |
|
return losses |
|
|
|
def forward_D_main(self, batch): |
|
""" |
|
we update ema this substep. |
|
""" |
|
FFHQ_DISC_UPDATE_INTERVAL = 4 |
|
losses = {} |
|
with torch.autograd.profiler.record_function('D_minimize_fake_forward'): |
|
if 'th1kh_recon_mv_imgs' in self.gen_tmp_output: |
|
camera = batch['th1kh_mv_cameras'] |
|
disc_inp_img = { |
|
'image': self.gen_tmp_output['th1kh_recon_mv_imgs'], |
|
'image_raw': self.gen_tmp_output['th1kh_recon_mv_imgs_raw'], |
|
} |
|
gen_logits = self.forward_D(disc_inp_img, camera, update_emas=True) |
|
losses['D_minimize_th1kh_mv_fake'] = torch.nn.functional.softplus(gen_logits).mean() |
|
if hparams.get("add_ffhq_singe_disc", False) and (self.global_step+1) % FFHQ_DISC_UPDATE_INTERVAL == 0: |
|
gen_logits = self.forward_ffhq_D(disc_inp_img, camera, update_emas=True) |
|
losses['D_ffhq_minimize_model_pred_mv'] = torch.nn.functional.softplus(gen_logits).mean() |
|
|
|
mv_cameras = batch['th1kh_mv_cameras'] |
|
mv_img_tmp_image = batch['th1kh_tgt_imgs'].detach().requires_grad_(True) |
|
mv_img_tmp_image_raw = batch['th1kh_mv_head_imgs_raw'].detach().requires_grad_(True) |
|
th1kh_mv_img_tmp = {'image': mv_img_tmp_image, 'image_raw': mv_img_tmp_image_raw} |
|
th1kh_mv_logits = self.forward_D(th1kh_mv_img_tmp, mv_cameras) |
|
losses['D_maximize_th1kh_mv'] = torch.nn.functional.softplus(-th1kh_mv_logits).mean() |
|
|
|
if hparams.get("add_ffhq_singe_disc", False) and (self.global_step+1) % FFHQ_DISC_UPDATE_INTERVAL == 0: |
|
ffhq_ref_img_tmp = {'image': batch['ffhq_com_imgs'].detach().requires_grad_(True),'image_raw': batch['ffhq_com_imgs_raw'].detach().requires_grad_(True)} |
|
ffhq_ref_logits = self.forward_ffhq_D(ffhq_ref_img_tmp, mv_cameras) |
|
losses['D_ffhq_maximize_gt_ref'] = torch.nn.functional.softplus(-ffhq_ref_logits).mean() |
|
|
|
if (self.global_step+1) % hparams['reg_interval_d'] == 0 and self.training is True: |
|
with conv2d_gradfix.no_weight_gradients(): |
|
mv_r1_grads = torch.autograd.grad(outputs=[th1kh_mv_logits.sum()], inputs=[th1kh_mv_img_tmp['image'], th1kh_mv_img_tmp['image_raw']], create_graph=True, only_inputs=True) |
|
mv_r1_grads_image = mv_r1_grads[0] |
|
mv_r1_grads_image_raw = mv_r1_grads[1] |
|
mv_r1_penalty_raw = mv_r1_grads_image_raw.square().sum([1,2,3]).mean() |
|
mv_r1_penalty_image = mv_r1_grads_image.square().sum([1,2,3]).mean() |
|
losses['D_th1kh_mv_gradient_penalty'] = (mv_r1_penalty_image + mv_r1_penalty_raw) / 2 |
|
if hparams.get("add_ffhq_singe_disc", False) and (self.global_step+1) % FFHQ_DISC_UPDATE_INTERVAL == 0: |
|
with conv2d_gradfix.no_weight_gradients(): |
|
ref_r1_grads = torch.autograd.grad(outputs=[ffhq_ref_logits.sum()], inputs=[ffhq_ref_img_tmp['image'], ffhq_ref_img_tmp['image_raw']], create_graph=True, only_inputs=True) |
|
ref_r1_grads_image = ref_r1_grads[0] |
|
ref_r1_grads_image_raw = ref_r1_grads[1] |
|
ref_r1_penalty_raw = ref_r1_grads_image_raw.square().sum([1,2,3]).mean() |
|
ref_r1_penalty_image = ref_r1_grads_image.square().sum([1,2,3]).mean() |
|
losses['D_ffhq_gradient_penalty_gt_ref'] = (ref_r1_penalty_image + ref_r1_penalty_raw) / 2 |
|
|
|
self.gen_tmp_output = {} |
|
return losses |
|
|
|
def _training_step(self, sample, batch_idx, optimizer_idx): |
|
if len(sample) == 0: |
|
return None |
|
if optimizer_idx == 0: |
|
sample = self.prepare_batch(sample) |
|
self.cache_sample = sample |
|
else: |
|
sample = self.cache_sample |
|
|
|
losses = {} |
|
if optimizer_idx == 0: |
|
|
|
self.model.on_train_superresolution() |
|
|
|
losses.update(self.run_G_th1kh_src2src_image(sample)) |
|
losses.update(self.run_G_th1kh_src2tgt_image(sample)) |
|
loss_weights = { |
|
'G_th1kh_mv_img_mae': hparams['lambda_mse'], |
|
'G_th1kh_mv_img_lpips': 0.1, |
|
'G_th1kh_mv_adv': hparams['lambda_th1kh_mv_adv'] if self.global_step >= self.start_adv_iters else 0., |
|
'G_th1kh_mv_img_lip_mae': 0.2, |
|
'G_th1kh_mv_img_lip_lpips': 0.02, |
|
|
|
'G_th1kh_ref_img_mae': hparams['lambda_mse'], |
|
'G_th1kh_ref_img_lpips': 0.1, |
|
'G_th1kh_ref_adv': hparams['lambda_th1kh_mv_adv'] if self.global_step >= self.start_adv_iters else 0., |
|
'G_th1kh_ref_img_lip_mae': 0.2, |
|
'G_th1kh_ref_img_lip_lpips': 0.02, |
|
|
|
'facev2v/occlusion_reg_l1': hparams['lam_occlusion_reg_l1'], |
|
'facev2v/occlusion_2_reg_l1': hparams.get('lam_occlusion_2_reg_l1', 0.), |
|
'facev2v/occlusion_2_weights_entropy': hparams['lam_occlusion_weights_entropy'], |
|
} |
|
|
|
elif optimizer_idx == 1: |
|
|
|
if self.global_step < hparams["start_adv_iters"] - 10000: |
|
|
|
return None |
|
losses.update(self.forward_D_main(sample)) |
|
loss_weights = { |
|
'D_maximize_ref': 1.0, |
|
'D_minimize_ref_fake': 1.0, |
|
'D_ref_gradient_penalty': hparams['lambda_gradient_penalty'] * hparams['reg_interval_d'], |
|
'D_maximize_mv': 1.0, |
|
'D_minimize_mv_fake': 1.0, |
|
'D_mv_gradient_penalty': hparams['lambda_gradient_penalty'] * hparams['reg_interval_d'], |
|
|
|
'D_maximize_th1kh_ref': 1.0, |
|
'D_minimize_th1kh_ref_fake': 1.0, |
|
'D_th1kh_ref_gradient_penalty': hparams['lambda_gradient_penalty'] * hparams['reg_interval_d'], |
|
'D_maximize_th1kh_mv': 1.0, |
|
'D_minimize_th1kh_mv_fake': 1.0, |
|
'D_th1kh_mv_gradient_penalty': hparams['lambda_gradient_penalty'] * hparams['reg_interval_d'], |
|
} |
|
self.gen_tmp_output = {} |
|
else: |
|
return None |
|
total_loss = sum([loss_weights[k] * v for k, v in losses.items() if isinstance(v, torch.Tensor) and v.requires_grad]) |
|
|
|
if len(losses) == 0: |
|
return None |
|
return total_loss, losses |
|
|
|
|
|
|
|
|
|
def validation_start(self): |
|
secc_img2plane_ckpt_dir = hparams.get('reload_head_ckpt', '') |
|
if secc_img2plane_ckpt_dir != '': |
|
load_ckpt(self.model.cano_img2plane_backbone, secc_img2plane_ckpt_dir, model_name='model.cano_img2plane_backbone', strict=True) |
|
load_ckpt(self.model.secc_img2plane_backbone, secc_img2plane_ckpt_dir, model_name='model.secc_img2plane_backbone', strict=True) |
|
load_ckpt(self.model.decoder, secc_img2plane_ckpt_dir, model_name='model.decoder', strict=True) |
|
|
|
if self.global_step % hparams['valid_infer_interval'] == 0: |
|
self.gen_dir = os.path.join(hparams['work_dir'], f'validation_results') |
|
os.makedirs(self.gen_dir, exist_ok=True) |
|
|
|
@torch.no_grad() |
|
def validation_step(self, sample, batch_idx): |
|
outputs = {} |
|
losses = {} |
|
if len(sample) == 0: |
|
return None |
|
sample = self.prepare_batch(sample) |
|
rank = 0 if len(set(os.environ['CUDA_VISIBLE_DEVICES'].split(","))) == 1 else dist.get_rank() |
|
|
|
losses.update(self.run_G_th1kh_src2tgt_image(sample)) |
|
losses.update(self.run_G_reg(sample)) |
|
losses.update(self.forward_D_main(sample)) |
|
outputs['losses'] = losses |
|
outputs['total_loss'] = sum(outputs['losses'].values()) |
|
outputs = tensors_to_scalars(outputs) |
|
|
|
if self.global_step % hparams['valid_infer_interval'] == 0 \ |
|
and batch_idx < hparams['num_valid_plots'] and rank == 0: |
|
|
|
imgs_ref = sample['th1kh_ref_head_imgs'] |
|
gen_img = self.model.forward(imgs_ref, sample['th1kh_mv_cameras'], cond={'cond_cano': sample['th1kh_cano_secc'],'cond_src': sample['th1kh_ref_secc'], 'cond_tgt': sample['th1kh_mv_secc'],'ref_torso_img': sample['th1kh_ref_torso_imgs'], 'bg_img': sample['th1kh_bg_imgs'], |
|
'segmap': sample['th1kh_ref_segmaps'], 'kp_s':sample['th1kh_ref_kp'], 'kp_d': sample['th1kh_mv_kp']}, noise_mode='const') |
|
gen_img_recon = self.model.forward(imgs_ref, sample['th1kh_ref_cameras'], cond={'cond_cano': sample['th1kh_cano_secc'], 'cond_src': sample['th1kh_ref_secc'], 'cond_tgt': sample['th1kh_ref_secc'],'ref_torso_img': sample['th1kh_ref_torso_imgs'], 'bg_img': sample['th1kh_bg_imgs'], |
|
'segmap': sample['th1kh_ref_segmaps'], 'kp_s':sample['th1kh_ref_kp'], 'kp_d': sample['th1kh_ref_kp']}, noise_mode='const') |
|
|
|
imgs_recon = gen_img_recon['image'].permute(0, 2,3,1) |
|
imgs_recon_raw = filtered_resizing(gen_img_recon['image_raw'], size=512, f=self.resample_filter, filter_mode='antialiased').permute(0, 2,3,1) |
|
imgs_recon_depth = gen_img_recon['image_depth'].permute(0, 2,3,1) |
|
imgs_pred_raw = filtered_resizing(gen_img['image_raw'], size=512, f=self.resample_filter, filter_mode='antialiased').permute(0, 2,3,1) |
|
imgs_pred = gen_img['image'].permute(0, 2,3,1) |
|
imgs_pred_depth = gen_img['image_depth'].permute(0, 2,3,1) |
|
imgs_ref = imgs_ref.permute(0,2,3,1) |
|
imgs_mv = sample['th1kh_tgt_imgs'].permute(0,2,3,1) |
|
imgs_ref_com = sample['th1kh_ref_com_imgs'].permute(0,2,3,1) |
|
|
|
for i in range(len(imgs_pred)): |
|
idx_string = format(i+batch_idx * hparams['batch_size'], "05d") |
|
base_fn = f"{idx_string}" |
|
img_ref_mv_recon_pred = torch.cat([imgs_ref_com[i], imgs_mv[i], imgs_recon_raw[i], imgs_pred_raw[i], imgs_recon[i], imgs_pred[i]], dim=1) |
|
ref_secc = filtered_resizing(sample['th1kh_ref_secc'][i].unsqueeze(0), size=512, f=self.resample_filter, filter_mode='antialiased')[0].permute(1,2,0) |
|
mv_secc = filtered_resizing(sample['th1kh_mv_secc'][i].unsqueeze(0), size=512, f=self.resample_filter, filter_mode='antialiased')[0].permute(1,2,0) |
|
img_ref_mv_recon_pred = torch.cat([img_ref_mv_recon_pred, ref_secc, mv_secc], dim=1) |
|
self.save_rgb_to_fname(img_ref_mv_recon_pred, f"{self.gen_dir}/th1kh_images_rgb_iter{self.global_step}/ref_mv_reconraw_predraw_recon_pred_{base_fn}.png") |
|
img_depth_recon_pred = torch.cat([imgs_recon_depth[i], imgs_pred_depth[i]], dim=1) |
|
self.save_depth_to_fname(img_depth_recon_pred, f"{self.gen_dir}/th1kh_images_depth_iter{self.global_step}/recon_pred_{base_fn}.png") |
|
return outputs |
|
|
|
def validation_end(self, outputs): |
|
return super().validation_end(outputs) |
|
|