File size: 27,999 Bytes
e34aada |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 |
import numpy as np
import torch
import torch.distributed as dist
import os
import random
import cv2
from utils.commons.hparams import hparams
from utils.commons.tensor_utils import tensors_to_scalars, convert_to_np, move_to_cuda
from utils.nn.model_utils import not_requires_grad, num_params
from utils.commons.dataset_utils import data_loader
from utils.nn.schedulers import NoneSchedule
from utils.commons.ckpt_utils import load_ckpt, get_last_checkpoint, restore_weights, restore_opt_state
from data_util.face3d_helper import Face3DHelper
from deep_3drecon.secc_renderer import SECC_Renderer
from tasks.os_avatar.loss_utils.vgg19_loss import VGG19Loss
from tasks.os_avatar.secc_img2plane_task import SECC_Img2PlaneEG3DTask
import lpips
from tasks.os_avatar.dataset_utils.motion2video_dataset import Motion2Video_Dataset
from modules.eg3ds.models.triplane import TriPlaneGenerator
from modules.eg3ds.models.dual_discriminator import DualDiscriminator
from modules.real3d.secc_img2plane_torso import OSAvatarSECC_Img2plane_Torso
from modules.eg3ds.torch_utils.ops import conv2d_gradfix
from modules.eg3ds.torch_utils.ops import upfirdn2d
from modules.eg3ds.models.dual_discriminator import filtered_resizing
class ScheduleForLM3DImg2PlaneEG3D(NoneSchedule):
def __init__(self, optimizer, lr, lr_d, warmup_updates=0):
self.optimizer = optimizer
self.constant_lr = self.lr = lr
self.lr_d = lr_d
self.warmup_updates = warmup_updates
self.step(0)
def step(self, num_updates):
constant_lr = self.constant_lr
if self.warmup_updates > 0 and num_updates <= self.warmup_updates:
warmup = min(num_updates / self.warmup_updates, 1.0)
self.lr = max(constant_lr * warmup, 1e-7)
else:
self.lr = constant_lr
for optim_i in range(len(self.optimizer)-1):
self.optimizer[optim_i].param_groups[0]['lr'] = max(1e-6, self.lr * (0.5) ** (num_updates // 50_000))
self.optimizer[-1].param_groups[0]['lr'] = max(1e-6, self.lr_d * (0.5) ** (num_updates // 50_000)) # for disc
return self.lr
class SECC_Img2PlaneEG3D_TorsoTask(SECC_Img2PlaneEG3DTask):
def build_model(self):
self.eg3d_model = TriPlaneGenerator()
load_ckpt(self.eg3d_model, hparams['pretrained_eg3d_ckpt'], strict=True)
self.model = OSAvatarSECC_Img2plane_Torso()
self.disc = DualDiscriminator()
assert hparams.get("img2plane_backbone_mode", "composite") == "composite"
assert hparams.get('init_from_ckpt', '') != '', "set init_from_ckpt with your secc2plane or secc2plane_torso ckpt!"
ckpt_dir = hparams.get('init_from_ckpt', '')
load_ckpt(self.model.cano_img2plane_backbone, ckpt_dir, model_name='model.cano_img2plane_backbone', strict=True)
load_ckpt(self.model.secc_img2plane_backbone, ckpt_dir, model_name='model.secc_img2plane_backbone', strict=True)
load_ckpt(self.model.decoder, ckpt_dir, model_name='model.decoder', strict=True)
load_ckpt(self.model.superresolution, ckpt_dir, model_name='model.superresolution', strict=False)
load_ckpt(self.disc, ckpt_dir, model_name='disc', strict=True)
secc_img2plane_ckpt_dir = hparams.get('reload_head_ckpt', '')
if secc_img2plane_ckpt_dir != '':
load_ckpt(self.model.cano_img2plane_backbone, secc_img2plane_ckpt_dir, model_name='model.cano_img2plane_backbone', strict=True)
load_ckpt(self.model.secc_img2plane_backbone, secc_img2plane_ckpt_dir, model_name='model.secc_img2plane_backbone', strict=True)
load_ckpt(self.model.decoder, secc_img2plane_ckpt_dir, model_name='model.decoder', strict=True)
# only update the torso-based superresolution module
self.upsample_params = [p for p in self.model.superresolution.parameters() if p.requires_grad]
self.disc_params = [p for k, p in self.disc.named_parameters() if p.requires_grad]
if hparams.get("add_ffhq_singe_disc", False):
self.ffhq_disc = DualDiscriminator()
self.disc_params += [p for k, p in self.ffhq_disc.named_parameters() if p.requires_grad]
eg3d_dir = 'checkpoints/geneface2_ckpts/eg3d_baseline_run2'
load_ckpt(self.ffhq_disc, eg3d_dir, model_name='disc', strict=True)
self.secc_renderer = SECC_Renderer(512)
self.face3d_helper = Face3DHelper(use_gpu=False)
return self.model
def on_train_start(self):
print("==============================")
num_params(self.model, model_name="Generator")
for n, m in self.model.named_children():
num_params(m, model_name="|-- "+n)
print("==============================")
for n, m in self.model.superresolution.named_children():
num_params(m, model_name="|-- "+ "SR module --"+n)
print("==============================")
num_params(self.disc, model_name="Discriminator")
for n, m in self.disc.named_children():
num_params(m, model_name="|-- "+n)
print("==============================")
def build_optimizer(self, model):
self.optimizer_gen = optimizer_gen = torch.optim.Adam(
self.upsample_params,
lr=hparams['lr_g'], # we use a 0.5x smaller lr for transformer
betas=(hparams['optimizer_adam_beta1_g'], hparams['optimizer_adam_beta2_g'])
)
mb_ratio_d = hparams['reg_interval_d'] / (hparams['reg_interval_d'] + 1)
self.optimizer_disc = optimizer_disc = torch.optim.Adam(
self.disc_params,
lr=hparams['lr_d'] * mb_ratio_d,
betas=(hparams['optimizer_adam_beta1_d'] ** mb_ratio_d, hparams['optimizer_adam_beta2_d'] ** mb_ratio_d))
optimizers = [optimizer_gen, optimizer_disc]
return optimizers
def build_scheduler(self, optimizer):
mb_ratio_d = hparams['reg_interval_d'] / (hparams['reg_interval_d'] + 1)
return ScheduleForLM3DImg2PlaneEG3D(optimizer, hparams['lr_g'], hparams['lr_d'] * mb_ratio_d, hparams['warmup_updates'])
def prepare_batch(self, batch):
out_batch = super().prepare_batch(batch)
if hparams.get("add_ffhq_singe_disc", False) and (self.global_step+1) % 4 == 0:
batch_size = batch['th1kh_ref_cameras'].shape[0]
ffhq_img_lst = []
ffhq_head_img_dir = '/mnt/bn/sa-ag-data/yezhenhui/datasets/raw/FFHQ/com_imgs'
while len(ffhq_img_lst) < batch_size:
idx = random.randint(0, 70000-1)
img_name = f"{ffhq_head_img_dir}/{format(idx,'05d')}.png"
if os.path.exists(img_name):
img = cv2.imread(img_name)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = img / 127.5 - 1
img = torch.tensor(img, dtype=batch['th1kh_ref_cameras'].dtype, device=batch['th1kh_ref_cameras'].device)
ffhq_img_lst.append(img)
ffhq_head_img = torch.stack(ffhq_img_lst).permute(0, 3, 1, 2)
out_batch['ffhq_com_imgs'] = ffhq_head_img
out_batch['ffhq_com_imgs_raw'] = filtered_resizing(out_batch['ffhq_head_imgs'], size=hparams['neural_rendering_resolution'], f=self.resample_filter, filter_mode='antialiased')
out_batch['th1kh_bg_imgs'] = batch['th1kh_bg_imgs']
out_batch['th1kh_ref_com_imgs'] = batch['th1kh_ref_com_imgs']
out_batch['th1kh_tgt_imgs'] = batch['th1kh_mv_com_imgs']
out_batch['th1kh_ref_segmaps'] = batch['th1kh_ref_segmaps']
torso_ref_segout_mode = hparams.get("torso_ref_segout_mode", "torso")
# assert torso_ref_segout_mode in ['person', 'torso', 'full', 'torso_with_bg']
assert torso_ref_segout_mode in ['full', 'torso_with_bg', 'torso', 'person']
if torso_ref_segout_mode == 'full':
out_batch['th1kh_ref_torso_imgs'] = batch['th1kh_ref_com_imgs']
elif torso_ref_segout_mode == 'torso_with_bg':
out_batch['th1kh_ref_torso_imgs'] = batch['th1kh_ref_inpaint_torso_with_com_bg_imgs']
elif torso_ref_segout_mode == 'torso':
out_batch['th1kh_ref_torso_imgs'] = batch['th1kh_ref_inpaint_torso_imgs']
elif torso_ref_segout_mode == 'person':
out_batch['th1kh_ref_torso_imgs'] = batch['th1kh_ref_person_imgs']
else: raise NotImplementedError()
ref_id, ref_exp, ref_euler, ref_trans = batch['th1kh_ref_ids'], batch['th1kh_ref_exps'], batch['th1kh_ref_eulers'], batch['th1kh_ref_trans']
ref_kp = self.face3d_helper.reconstruct_lm2d(ref_id, ref_exp, ref_euler, ref_trans)
ref_kp = (ref_kp - 0.5) * 2 # map to -1~1
ref_kp = torch.cat([ref_kp, torch.zeros([ref_kp.shape[0], ref_kp.shape[1], 1]).to(ref_kp.device)], dim=-1)
mv_id, mv_exp, mv_euler, mv_trans = batch['th1kh_mv_ids'], batch['th1kh_mv_exps'], batch['th1kh_mv_eulers'], batch['th1kh_mv_trans']
mv_kp = self.face3d_helper.reconstruct_lm2d(mv_id, mv_exp, mv_euler, mv_trans)
mv_kp = (mv_kp - 0.5) * 2 # map to -1~1
mv_kp = torch.cat([mv_kp, torch.zeros([mv_kp.shape[0], mv_kp.shape[1], 1]).to(mv_kp.device)], dim=-1)
out_batch.update({
'th1kh_ref_kp': ref_kp,
'th1kh_mv_kp': mv_kp,
})
batch['th1kh_ref_torso_masks'] = self.dilate_mask(batch['th1kh_ref_torso_masks'].float(), ksize=41).long()
out_batch['th1kh_ref_torso_masks'] = batch['th1kh_ref_torso_masks'].bool()
out_batch['th1kh_ref_torso_masks_raw'] = torch.nn.functional.interpolate(batch['th1kh_ref_torso_masks'].unsqueeze(1).float(), size=(128,128), mode='nearest').squeeze(1).bool()
batch['th1kh_mv_torso_masks'] = self.dilate_mask(batch['th1kh_mv_torso_masks'].float(), ksize=41).long()
out_batch['th1kh_mv_torso_masks'] = batch['th1kh_mv_torso_masks'].bool()
out_batch['th1kh_mv_torso_masks_raw'] = torch.nn.functional.interpolate(batch['th1kh_mv_torso_masks'].unsqueeze(1).float(), size=(128,128), mode='nearest').squeeze(1).bool()
return out_batch
def run_G_th1kh_src2src_image(self, batch):
ret = {}
losses = {}
SRC2SRC_UPDATE_INTERVAL = 4
if self.global_step % SRC2SRC_UPDATE_INTERVAL != 0:
return losses
with torch.autograd.profiler.record_function('G_th1kh_ref_forward'):
camera = batch['th1kh_ref_cameras']
img = batch['th1kh_ref_com_imgs']
gen_img = self.forward_G(batch['th1kh_ref_head_imgs'], camera, cond={
'cond_cano': batch['th1kh_cano_secc'], 'cond_src': batch['th1kh_ref_secc'], 'cond_tgt': batch['th1kh_ref_secc'],
'ref_torso_img': batch['th1kh_ref_torso_imgs'], 'bg_img': batch['th1kh_bg_imgs'],
'segmap': batch['th1kh_ref_segmaps'],
'kp_s':batch['th1kh_ref_kp'], 'kp_d': batch['th1kh_ref_kp'],
'target_torso_mask': batch['th1kh_ref_torso_masks_raw'],
}, ret=ret)
if 'losses' in ret: losses.update(ret['losses'])
losses['G_ref_plane_l1_mean'] = (gen_img['plane'][:,:]).detach().abs().mean()
losses['G_ref_plane_l1_std'] = (gen_img['plane'][:,:]).detach().abs().std()
if hparams.get("masked_error", True):
# 之所以用L1不用MSE,原因是mse对mismatch的pixel loss过大,而导致面部细节被忽略,此外还有过模糊的问题
# 对raw图像,因为deform的原因背景没法全黑,导致这部分mse过高,我们将其mask掉,只计算人脸部分
losses['G_th1kh_ref_img_mae'] = self.masked_error_loss(gen_img['image'], img, batch['th1kh_ref_torso_masks'], mode='l1', unmasked_weight=0.5)
losses['G_th1kh_ref_img_lpips'] = self.criterion_lpips(gen_img['image'], img).mean()
else:
losses['G_th1kh_ref_img_mae'] = (gen_img['image'] - img).abs().mean()
losses['G_th1kh_ref_img_lpips'] = self.criterion_lpips(gen_img['image'], img).mean()
# lip loss
batch_size = len(gen_img['image'])
lip_mse_loss = 0
lip_lpips_loss = 0
for i in range(batch_size):
xmin, xmax, ymin, ymax = batch['th1kh_ref_lip_rects'][i]
lip_tgt_imgs = img[i:i+1,:, ymin:ymax,xmin:xmax].contiguous()
lip_pred_imgs = gen_img['image'][i:i+1,:, ymin:ymax,xmin:xmax].contiguous()
lip_mse_loss = lip_mse_loss + 1/batch_size * (lip_pred_imgs - lip_tgt_imgs).abs().mean()
try:
lip_lpips_loss = lip_lpips_loss + 1/batch_size * self.criterion_lpips(lip_pred_imgs, lip_tgt_imgs).mean()
except: pass
losses['G_th1kh_ref_img_lip_mae'] = lip_mse_loss
losses['G_th1kh_ref_img_lip_lpips'] = lip_lpips_loss
disc_inp_img = {
'image': gen_img['image'],
'image_raw': gen_img['image_raw'],
}
gen_logits = self.forward_D(disc_inp_img, camera)
losses['G_th1kh_ref_adv'] = torch.nn.functional.softplus(-gen_logits).mean()
if hparams.get("add_ffhq_singe_disc", False):
gen_logits = self.forward_ffhq_D(disc_inp_img, camera)
losses['G_ffhq_ref_adv'] = torch.nn.functional.softplus(-gen_logits).mean()
return losses
def run_G_th1kh_src2tgt_image(self, batch):
ret = {}
losses = {}
with torch.autograd.profiler.record_function('G_th1kh_mv_forward'):
camera = batch['th1kh_mv_cameras']
img = batch['th1kh_tgt_imgs']
gen_img = self.forward_G(batch['th1kh_ref_head_imgs'], camera, cond={
'cond_cano': batch['th1kh_cano_secc'], 'cond_src': batch['th1kh_ref_secc'], 'cond_tgt': batch['th1kh_mv_secc'],
'ref_torso_img': batch['th1kh_ref_torso_imgs'], 'bg_img': batch['th1kh_bg_imgs'],
'segmap': batch['th1kh_ref_segmaps'],
'kp_s':batch['th1kh_ref_kp'], 'kp_d': batch['th1kh_mv_kp'],
'target_torso_mask': batch['th1kh_mv_torso_masks_raw'],
}, ret=ret)
if 'losses' in ret: losses.update(ret['losses'])
losses['G_mv_plane_l1_mean'] = (gen_img['plane'][:,:]).detach().abs().mean()
losses['G_mv_plane_l1_std'] = (gen_img['plane'][:,:]).detach().abs().std()
if hparams.get("masked_error", True):
# 之所以用L1不用MSE,原因是mse对mismatch的pixel loss过大,而导致面部细节被忽略,此外还有过模糊的问题
# 对raw图像,因为deform的原因背景没法全黑,导致这部分mse过高,我们将其mask掉,只计算人脸部分
losses['G_th1kh_mv_img_mae'] = self.masked_error_loss(gen_img['image'], img, batch['th1kh_mv_torso_masks'], mode='l1', unmasked_weight=0.5)
losses['G_th1kh_mv_img_lpips'] = self.criterion_lpips(gen_img['image'], img).mean()
else:
losses['G_th1kh_mv_img_mae'] = (gen_img['image'] - img).abs().mean()
losses['G_th1kh_mv_img_lpips'] = self.criterion_lpips(gen_img['image'], img).mean()
# lip loss
batch_size = len(gen_img['image'])
lip_mse_loss = 0
lip_lpips_loss = 0
for i in range(batch_size):
xmin, xmax, ymin, ymax = batch['th1kh_mv_lip_rects'][i]
lip_tgt_imgs = img[i:i+1,:, ymin:ymax,xmin:xmax].contiguous()
lip_pred_imgs = gen_img['image'][i:i+1,:, ymin:ymax,xmin:xmax].contiguous()
lip_mse_loss = lip_mse_loss + 1/batch_size * (lip_pred_imgs - lip_tgt_imgs).abs().mean()
try:
lip_lpips_loss = lip_lpips_loss + 1/batch_size * self.criterion_lpips(lip_pred_imgs, lip_tgt_imgs).mean()
except: pass
losses['G_th1kh_mv_img_lip_mae'] = lip_mse_loss
losses['G_th1kh_mv_img_lip_lpips'] = lip_lpips_loss
self.gen_tmp_output['th1kh_recon_mv_imgs'] = gen_img['image'].detach()
self.gen_tmp_output['th1kh_recon_mv_imgs_raw'] = gen_img['image_raw'].detach()
disc_inp_img = {
'image': gen_img['image'],
'image_raw': gen_img['image_raw'],
}
gen_logits = self.forward_D(disc_inp_img, camera)
losses['G_th1kh_mv_adv'] = torch.nn.functional.softplus(-gen_logits).mean()
return losses
def forward_D_main(self, batch):
"""
we update ema this substep.
"""
FFHQ_DISC_UPDATE_INTERVAL = 4
losses = {}
with torch.autograd.profiler.record_function('D_minimize_fake_forward'):
if 'th1kh_recon_mv_imgs' in self.gen_tmp_output:
camera = batch['th1kh_mv_cameras']
disc_inp_img = {
'image': self.gen_tmp_output['th1kh_recon_mv_imgs'],
'image_raw': self.gen_tmp_output['th1kh_recon_mv_imgs_raw'],
}
gen_logits = self.forward_D(disc_inp_img, camera, update_emas=True)
losses['D_minimize_th1kh_mv_fake'] = torch.nn.functional.softplus(gen_logits).mean()
if hparams.get("add_ffhq_singe_disc", False) and (self.global_step+1) % FFHQ_DISC_UPDATE_INTERVAL == 0:
gen_logits = self.forward_ffhq_D(disc_inp_img, camera, update_emas=True)
losses['D_ffhq_minimize_model_pred_mv'] = torch.nn.functional.softplus(gen_logits).mean()
mv_cameras = batch['th1kh_mv_cameras']
mv_img_tmp_image = batch['th1kh_tgt_imgs'].detach().requires_grad_(True)
mv_img_tmp_image_raw = batch['th1kh_mv_head_imgs_raw'].detach().requires_grad_(True)
th1kh_mv_img_tmp = {'image': mv_img_tmp_image, 'image_raw': mv_img_tmp_image_raw}
th1kh_mv_logits = self.forward_D(th1kh_mv_img_tmp, mv_cameras)
losses['D_maximize_th1kh_mv'] = torch.nn.functional.softplus(-th1kh_mv_logits).mean()
if hparams.get("add_ffhq_singe_disc", False) and (self.global_step+1) % FFHQ_DISC_UPDATE_INTERVAL == 0:
ffhq_ref_img_tmp = {'image': batch['ffhq_com_imgs'].detach().requires_grad_(True),'image_raw': batch['ffhq_com_imgs_raw'].detach().requires_grad_(True)}
ffhq_ref_logits = self.forward_ffhq_D(ffhq_ref_img_tmp, mv_cameras) # mv_camera will be mul 0 in forward_ffhq_D
losses['D_ffhq_maximize_gt_ref'] = torch.nn.functional.softplus(-ffhq_ref_logits).mean()
if (self.global_step+1) % hparams['reg_interval_d'] == 0 and self.training is True:
with conv2d_gradfix.no_weight_gradients():
mv_r1_grads = torch.autograd.grad(outputs=[th1kh_mv_logits.sum()], inputs=[th1kh_mv_img_tmp['image'], th1kh_mv_img_tmp['image_raw']], create_graph=True, only_inputs=True)
mv_r1_grads_image = mv_r1_grads[0]
mv_r1_grads_image_raw = mv_r1_grads[1]
mv_r1_penalty_raw = mv_r1_grads_image_raw.square().sum([1,2,3]).mean()
mv_r1_penalty_image = mv_r1_grads_image.square().sum([1,2,3]).mean()
losses['D_th1kh_mv_gradient_penalty'] = (mv_r1_penalty_image + mv_r1_penalty_raw) / 2
if hparams.get("add_ffhq_singe_disc", False) and (self.global_step+1) % FFHQ_DISC_UPDATE_INTERVAL == 0:
with conv2d_gradfix.no_weight_gradients():
ref_r1_grads = torch.autograd.grad(outputs=[ffhq_ref_logits.sum()], inputs=[ffhq_ref_img_tmp['image'], ffhq_ref_img_tmp['image_raw']], create_graph=True, only_inputs=True)
ref_r1_grads_image = ref_r1_grads[0]
ref_r1_grads_image_raw = ref_r1_grads[1]
ref_r1_penalty_raw = ref_r1_grads_image_raw.square().sum([1,2,3]).mean()
ref_r1_penalty_image = ref_r1_grads_image.square().sum([1,2,3]).mean()
losses['D_ffhq_gradient_penalty_gt_ref'] = (ref_r1_penalty_image + ref_r1_penalty_raw) / 2
self.gen_tmp_output = {}
return losses
def _training_step(self, sample, batch_idx, optimizer_idx):
if len(sample) == 0:
return None
if optimizer_idx == 0:
sample = self.prepare_batch(sample)
self.cache_sample = sample
else:
sample = self.cache_sample
losses = {}
if optimizer_idx == 0:
# Train Generator
self.model.on_train_superresolution()
losses.update(self.run_G_th1kh_src2src_image(sample))
losses.update(self.run_G_th1kh_src2tgt_image(sample))
loss_weights = {
'G_th1kh_mv_img_mae': hparams['lambda_mse'],
'G_th1kh_mv_img_lpips': 0.1,
'G_th1kh_mv_adv': hparams['lambda_th1kh_mv_adv'] if self.global_step >= self.start_adv_iters else 0.,
'G_th1kh_mv_img_lip_mae': 0.2,
'G_th1kh_mv_img_lip_lpips': 0.02,
'G_th1kh_ref_img_mae': hparams['lambda_mse'],
'G_th1kh_ref_img_lpips': 0.1,
'G_th1kh_ref_adv': hparams['lambda_th1kh_mv_adv'] if self.global_step >= self.start_adv_iters else 0.,
'G_th1kh_ref_img_lip_mae': 0.2,
'G_th1kh_ref_img_lip_lpips': 0.02,
'facev2v/occlusion_reg_l1': hparams['lam_occlusion_reg_l1'],
'facev2v/occlusion_2_reg_l1': hparams.get('lam_occlusion_2_reg_l1', 0.),
'facev2v/occlusion_2_weights_entropy': hparams['lam_occlusion_weights_entropy'],
}
elif optimizer_idx == 1:
# Train Disc
if self.global_step < hparams["start_adv_iters"] - 10000:
# start train disc too early is a waste of resource
return None
losses.update(self.forward_D_main(sample))
loss_weights = {
'D_maximize_ref': 1.0,
'D_minimize_ref_fake': 1.0,
'D_ref_gradient_penalty': hparams['lambda_gradient_penalty'] * hparams['reg_interval_d'],
'D_maximize_mv': 1.0,
'D_minimize_mv_fake': 1.0,
'D_mv_gradient_penalty': hparams['lambda_gradient_penalty'] * hparams['reg_interval_d'],
'D_maximize_th1kh_ref': 1.0,
'D_minimize_th1kh_ref_fake': 1.0,
'D_th1kh_ref_gradient_penalty': hparams['lambda_gradient_penalty'] * hparams['reg_interval_d'],
'D_maximize_th1kh_mv': 1.0,
'D_minimize_th1kh_mv_fake': 1.0,
'D_th1kh_mv_gradient_penalty': hparams['lambda_gradient_penalty'] * hparams['reg_interval_d'],
}
self.gen_tmp_output = {}
else:
return None
total_loss = sum([loss_weights[k] * v for k, v in losses.items() if isinstance(v, torch.Tensor) and v.requires_grad])
# total_loss = sum([loss_weights.get(k, 1.0) * v for k, v in losses.items() if isinstance(v, torch.Tensor) and v.requires_grad])
if len(losses) == 0:
return None
return total_loss, losses
#####################
# Validation
#####################
def validation_start(self):
secc_img2plane_ckpt_dir = hparams.get('reload_head_ckpt', '')
if secc_img2plane_ckpt_dir != '':
load_ckpt(self.model.cano_img2plane_backbone, secc_img2plane_ckpt_dir, model_name='model.cano_img2plane_backbone', strict=True)
load_ckpt(self.model.secc_img2plane_backbone, secc_img2plane_ckpt_dir, model_name='model.secc_img2plane_backbone', strict=True)
load_ckpt(self.model.decoder, secc_img2plane_ckpt_dir, model_name='model.decoder', strict=True)
if self.global_step % hparams['valid_infer_interval'] == 0:
self.gen_dir = os.path.join(hparams['work_dir'], f'validation_results')
os.makedirs(self.gen_dir, exist_ok=True)
@torch.no_grad()
def validation_step(self, sample, batch_idx):
outputs = {}
losses = {}
if len(sample) == 0:
return None
sample = self.prepare_batch(sample)
rank = 0 if len(set(os.environ['CUDA_VISIBLE_DEVICES'].split(","))) == 1 else dist.get_rank()
losses.update(self.run_G_th1kh_src2tgt_image(sample))
losses.update(self.run_G_reg(sample))
losses.update(self.forward_D_main(sample))
outputs['losses'] = losses
outputs['total_loss'] = sum(outputs['losses'].values())
outputs = tensors_to_scalars(outputs)
if self.global_step % hparams['valid_infer_interval'] == 0 \
and batch_idx < hparams['num_valid_plots'] and rank == 0:
imgs_ref = sample['th1kh_ref_head_imgs']
gen_img = self.model.forward(imgs_ref, sample['th1kh_mv_cameras'], cond={'cond_cano': sample['th1kh_cano_secc'],'cond_src': sample['th1kh_ref_secc'], 'cond_tgt': sample['th1kh_mv_secc'],'ref_torso_img': sample['th1kh_ref_torso_imgs'], 'bg_img': sample['th1kh_bg_imgs'],
'segmap': sample['th1kh_ref_segmaps'], 'kp_s':sample['th1kh_ref_kp'], 'kp_d': sample['th1kh_mv_kp']}, noise_mode='const')
gen_img_recon = self.model.forward(imgs_ref, sample['th1kh_ref_cameras'], cond={'cond_cano': sample['th1kh_cano_secc'], 'cond_src': sample['th1kh_ref_secc'], 'cond_tgt': sample['th1kh_ref_secc'],'ref_torso_img': sample['th1kh_ref_torso_imgs'], 'bg_img': sample['th1kh_bg_imgs'],
'segmap': sample['th1kh_ref_segmaps'], 'kp_s':sample['th1kh_ref_kp'], 'kp_d': sample['th1kh_ref_kp']}, noise_mode='const')
imgs_recon = gen_img_recon['image'].permute(0, 2,3,1)
imgs_recon_raw = filtered_resizing(gen_img_recon['image_raw'], size=512, f=self.resample_filter, filter_mode='antialiased').permute(0, 2,3,1)
imgs_recon_depth = gen_img_recon['image_depth'].permute(0, 2,3,1)
imgs_pred_raw = filtered_resizing(gen_img['image_raw'], size=512, f=self.resample_filter, filter_mode='antialiased').permute(0, 2,3,1)
imgs_pred = gen_img['image'].permute(0, 2,3,1)
imgs_pred_depth = gen_img['image_depth'].permute(0, 2,3,1)
imgs_ref = imgs_ref.permute(0,2,3,1)
imgs_mv = sample['th1kh_tgt_imgs'].permute(0,2,3,1) # [B, H, W, 3]
imgs_ref_com = sample['th1kh_ref_com_imgs'].permute(0,2,3,1) # [B, H, W, 3]
for i in range(len(imgs_pred)):
idx_string = format(i+batch_idx * hparams['batch_size'], "05d")
base_fn = f"{idx_string}"
img_ref_mv_recon_pred = torch.cat([imgs_ref_com[i], imgs_mv[i], imgs_recon_raw[i], imgs_pred_raw[i], imgs_recon[i], imgs_pred[i]], dim=1)
ref_secc = filtered_resizing(sample['th1kh_ref_secc'][i].unsqueeze(0), size=512, f=self.resample_filter, filter_mode='antialiased')[0].permute(1,2,0)
mv_secc = filtered_resizing(sample['th1kh_mv_secc'][i].unsqueeze(0), size=512, f=self.resample_filter, filter_mode='antialiased')[0].permute(1,2,0)
img_ref_mv_recon_pred = torch.cat([img_ref_mv_recon_pred, ref_secc, mv_secc], dim=1)
self.save_rgb_to_fname(img_ref_mv_recon_pred, f"{self.gen_dir}/th1kh_images_rgb_iter{self.global_step}/ref_mv_reconraw_predraw_recon_pred_{base_fn}.png")
img_depth_recon_pred = torch.cat([imgs_recon_depth[i], imgs_pred_depth[i]], dim=1)
self.save_depth_to_fname(img_depth_recon_pred, f"{self.gen_dir}/th1kh_images_depth_iter{self.global_step}/recon_pred_{base_fn}.png")
return outputs
def validation_end(self, outputs):
return super().validation_end(outputs)
|