File size: 27,999 Bytes
e34aada
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
import numpy as np
import torch
import torch.distributed as dist
import os
import random 
import cv2

from utils.commons.hparams import hparams
from utils.commons.tensor_utils import tensors_to_scalars, convert_to_np, move_to_cuda
from utils.nn.model_utils import not_requires_grad, num_params
from utils.commons.dataset_utils import data_loader
from utils.nn.schedulers import NoneSchedule
from utils.commons.ckpt_utils import load_ckpt, get_last_checkpoint, restore_weights, restore_opt_state

from data_util.face3d_helper import Face3DHelper
from deep_3drecon.secc_renderer import SECC_Renderer
from tasks.os_avatar.loss_utils.vgg19_loss import VGG19Loss
from tasks.os_avatar.secc_img2plane_task import SECC_Img2PlaneEG3DTask
import lpips

from tasks.os_avatar.dataset_utils.motion2video_dataset import Motion2Video_Dataset

from modules.eg3ds.models.triplane import TriPlaneGenerator
from modules.eg3ds.models.dual_discriminator import DualDiscriminator
from modules.real3d.secc_img2plane_torso import OSAvatarSECC_Img2plane_Torso

from modules.eg3ds.torch_utils.ops import conv2d_gradfix
from modules.eg3ds.torch_utils.ops import upfirdn2d
from modules.eg3ds.models.dual_discriminator import filtered_resizing


class ScheduleForLM3DImg2PlaneEG3D(NoneSchedule):
    def __init__(self, optimizer, lr, lr_d, warmup_updates=0):
        self.optimizer = optimizer
        self.constant_lr = self.lr = lr
        self.lr_d = lr_d
        self.warmup_updates = warmup_updates
        self.step(0)

    def step(self, num_updates):
        constant_lr = self.constant_lr
        if self.warmup_updates > 0 and num_updates <= self.warmup_updates:
            warmup = min(num_updates / self.warmup_updates, 1.0)
            self.lr = max(constant_lr * warmup, 1e-7)
        else:
            self.lr = constant_lr

        for optim_i in range(len(self.optimizer)-1):
            self.optimizer[optim_i].param_groups[0]['lr'] = max(1e-6, self.lr * (0.5) ** (num_updates // 50_000))
        self.optimizer[-1].param_groups[0]['lr'] = max(1e-6, self.lr_d * (0.5) ** (num_updates // 50_000)) # for disc
        return self.lr
    

class SECC_Img2PlaneEG3D_TorsoTask(SECC_Img2PlaneEG3DTask):
    def build_model(self):
        self.eg3d_model = TriPlaneGenerator()
        load_ckpt(self.eg3d_model, hparams['pretrained_eg3d_ckpt'], strict=True)

        self.model = OSAvatarSECC_Img2plane_Torso()
        self.disc = DualDiscriminator()

        assert hparams.get("img2plane_backbone_mode", "composite") == "composite"
        
        assert hparams.get('init_from_ckpt', '') != '', "set init_from_ckpt with your secc2plane or secc2plane_torso ckpt!"
        ckpt_dir = hparams.get('init_from_ckpt', '')
        load_ckpt(self.model.cano_img2plane_backbone, ckpt_dir, model_name='model.cano_img2plane_backbone', strict=True)
        load_ckpt(self.model.secc_img2plane_backbone, ckpt_dir, model_name='model.secc_img2plane_backbone', strict=True)
        load_ckpt(self.model.decoder, ckpt_dir, model_name='model.decoder', strict=True)
        load_ckpt(self.model.superresolution, ckpt_dir, model_name='model.superresolution', strict=False)
        load_ckpt(self.disc, ckpt_dir, model_name='disc', strict=True)

        secc_img2plane_ckpt_dir = hparams.get('reload_head_ckpt', '')
        if secc_img2plane_ckpt_dir != '':
            load_ckpt(self.model.cano_img2plane_backbone, secc_img2plane_ckpt_dir, model_name='model.cano_img2plane_backbone', strict=True)
            load_ckpt(self.model.secc_img2plane_backbone, secc_img2plane_ckpt_dir, model_name='model.secc_img2plane_backbone', strict=True)
            load_ckpt(self.model.decoder, secc_img2plane_ckpt_dir, model_name='model.decoder', strict=True)
        
        # only update the torso-based superresolution module
        self.upsample_params = [p for p in self.model.superresolution.parameters() if p.requires_grad]
        self.disc_params = [p for k, p in self.disc.named_parameters() if p.requires_grad] 

        if hparams.get("add_ffhq_singe_disc", False):
            self.ffhq_disc = DualDiscriminator()
            self.disc_params += [p for k, p in self.ffhq_disc.named_parameters() if p.requires_grad] 
            eg3d_dir = 'checkpoints/geneface2_ckpts/eg3d_baseline_run2'
            load_ckpt(self.ffhq_disc, eg3d_dir, model_name='disc', strict=True)

        self.secc_renderer = SECC_Renderer(512)
        self.face3d_helper = Face3DHelper(use_gpu=False)
        return self.model

    def on_train_start(self):
        print("==============================")
        num_params(self.model, model_name="Generator")
        for n, m in self.model.named_children():
            num_params(m, model_name="|-- "+n)
        print("==============================")
        for n, m in self.model.superresolution.named_children():
            num_params(m, model_name="|-- "+ "SR module --"+n)
        print("==============================")
        num_params(self.disc, model_name="Discriminator")
        for n, m in self.disc.named_children():
            num_params(m, model_name="|-- "+n)
        print("==============================")

    def build_optimizer(self, model):
        self.optimizer_gen = optimizer_gen = torch.optim.Adam(
            self.upsample_params,
            lr=hparams['lr_g'], # we use a 0.5x smaller lr for transformer
            betas=(hparams['optimizer_adam_beta1_g'], hparams['optimizer_adam_beta2_g'])
        )

        mb_ratio_d = hparams['reg_interval_d'] / (hparams['reg_interval_d']  + 1)
        self.optimizer_disc = optimizer_disc = torch.optim.Adam(
            self.disc_params,
            lr=hparams['lr_d'] * mb_ratio_d,
            betas=(hparams['optimizer_adam_beta1_d'] ** mb_ratio_d, hparams['optimizer_adam_beta2_d'] ** mb_ratio_d))
        optimizers = [optimizer_gen, optimizer_disc]
        return optimizers
    
    def build_scheduler(self, optimizer):
        mb_ratio_d = hparams['reg_interval_d'] / (hparams['reg_interval_d']  + 1)
        return ScheduleForLM3DImg2PlaneEG3D(optimizer, hparams['lr_g'], hparams['lr_d'] * mb_ratio_d, hparams['warmup_updates'])
    
    def prepare_batch(self, batch):
        out_batch = super().prepare_batch(batch)

        if hparams.get("add_ffhq_singe_disc", False) and (self.global_step+1) % 4 == 0:
            batch_size = batch['th1kh_ref_cameras'].shape[0]
            ffhq_img_lst = []
            ffhq_head_img_dir = '/mnt/bn/sa-ag-data/yezhenhui/datasets/raw/FFHQ/com_imgs'
            while len(ffhq_img_lst) < batch_size:
                idx = random.randint(0, 70000-1)
                img_name = f"{ffhq_head_img_dir}/{format(idx,'05d')}.png"
                if os.path.exists(img_name):
                    img = cv2.imread(img_name)
                    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
                    img = img / 127.5 - 1
                    img = torch.tensor(img, dtype=batch['th1kh_ref_cameras'].dtype, device=batch['th1kh_ref_cameras'].device)
                    ffhq_img_lst.append(img)
            ffhq_head_img = torch.stack(ffhq_img_lst).permute(0, 3, 1, 2)
            out_batch['ffhq_com_imgs'] = ffhq_head_img
            out_batch['ffhq_com_imgs_raw'] = filtered_resizing(out_batch['ffhq_head_imgs'], size=hparams['neural_rendering_resolution'], f=self.resample_filter, filter_mode='antialiased')

        out_batch['th1kh_bg_imgs'] = batch['th1kh_bg_imgs']
        out_batch['th1kh_ref_com_imgs'] = batch['th1kh_ref_com_imgs']
        out_batch['th1kh_tgt_imgs'] = batch['th1kh_mv_com_imgs']
        out_batch['th1kh_ref_segmaps'] = batch['th1kh_ref_segmaps']

        torso_ref_segout_mode = hparams.get("torso_ref_segout_mode", "torso")
        # assert torso_ref_segout_mode in ['person', 'torso', 'full', 'torso_with_bg']
        assert torso_ref_segout_mode in ['full', 'torso_with_bg', 'torso', 'person']
        if torso_ref_segout_mode == 'full':
            out_batch['th1kh_ref_torso_imgs'] = batch['th1kh_ref_com_imgs']
        elif torso_ref_segout_mode == 'torso_with_bg':
            out_batch['th1kh_ref_torso_imgs'] = batch['th1kh_ref_inpaint_torso_with_com_bg_imgs']
        elif torso_ref_segout_mode == 'torso':
            out_batch['th1kh_ref_torso_imgs'] = batch['th1kh_ref_inpaint_torso_imgs']
        elif torso_ref_segout_mode == 'person':
            out_batch['th1kh_ref_torso_imgs'] = batch['th1kh_ref_person_imgs']
        else: raise NotImplementedError()

        ref_id, ref_exp, ref_euler, ref_trans = batch['th1kh_ref_ids'], batch['th1kh_ref_exps'], batch['th1kh_ref_eulers'], batch['th1kh_ref_trans']
        ref_kp = self.face3d_helper.reconstruct_lm2d(ref_id, ref_exp, ref_euler, ref_trans)
        ref_kp = (ref_kp - 0.5) * 2 # map to -1~1
        ref_kp = torch.cat([ref_kp, torch.zeros([ref_kp.shape[0], ref_kp.shape[1], 1]).to(ref_kp.device)], dim=-1)

        mv_id, mv_exp, mv_euler, mv_trans = batch['th1kh_mv_ids'], batch['th1kh_mv_exps'], batch['th1kh_mv_eulers'], batch['th1kh_mv_trans']
        mv_kp = self.face3d_helper.reconstruct_lm2d(mv_id, mv_exp, mv_euler, mv_trans)
        mv_kp = (mv_kp - 0.5) * 2 # map to -1~1
        mv_kp = torch.cat([mv_kp, torch.zeros([mv_kp.shape[0], mv_kp.shape[1], 1]).to(mv_kp.device)], dim=-1)

        out_batch.update({
            'th1kh_ref_kp': ref_kp,
            'th1kh_mv_kp': mv_kp,
        })

        batch['th1kh_ref_torso_masks'] = self.dilate_mask(batch['th1kh_ref_torso_masks'].float(), ksize=41).long()
        out_batch['th1kh_ref_torso_masks'] = batch['th1kh_ref_torso_masks'].bool()
        out_batch['th1kh_ref_torso_masks_raw'] = torch.nn.functional.interpolate(batch['th1kh_ref_torso_masks'].unsqueeze(1).float(), size=(128,128), mode='nearest').squeeze(1).bool()
        
        batch['th1kh_mv_torso_masks'] = self.dilate_mask(batch['th1kh_mv_torso_masks'].float(), ksize=41).long()
        out_batch['th1kh_mv_torso_masks'] = batch['th1kh_mv_torso_masks'].bool()
        out_batch['th1kh_mv_torso_masks_raw'] = torch.nn.functional.interpolate(batch['th1kh_mv_torso_masks'].unsqueeze(1).float(), size=(128,128), mode='nearest').squeeze(1).bool()


        return out_batch

    def run_G_th1kh_src2src_image(self, batch):
        ret = {}
        losses = {}
        SRC2SRC_UPDATE_INTERVAL = 4
        if self.global_step % SRC2SRC_UPDATE_INTERVAL != 0:
            return losses

        with torch.autograd.profiler.record_function('G_th1kh_ref_forward'):
            camera = batch['th1kh_ref_cameras']
            img = batch['th1kh_ref_com_imgs']
            gen_img = self.forward_G(batch['th1kh_ref_head_imgs'], camera, cond={
                        'cond_cano': batch['th1kh_cano_secc'], 'cond_src': batch['th1kh_ref_secc'], 'cond_tgt': batch['th1kh_ref_secc'], 
                        'ref_torso_img': batch['th1kh_ref_torso_imgs'], 'bg_img': batch['th1kh_bg_imgs'],
                        'segmap': batch['th1kh_ref_segmaps'],
                        'kp_s':batch['th1kh_ref_kp'], 'kp_d': batch['th1kh_ref_kp'],
                        'target_torso_mask': batch['th1kh_ref_torso_masks_raw'],
                        }, ret=ret)
            if 'losses' in ret: losses.update(ret['losses'])
            
            losses['G_ref_plane_l1_mean'] = (gen_img['plane'][:,:]).detach().abs().mean()
            losses['G_ref_plane_l1_std'] = (gen_img['plane'][:,:]).detach().abs().std()
            if hparams.get("masked_error", True):
                # 之所以用L1不用MSE,原因是mse对mismatch的pixel loss过大,而导致面部细节被忽略,此外还有过模糊的问题
                # 对raw图像,因为deform的原因背景没法全黑,导致这部分mse过高,我们将其mask掉,只计算人脸部分
                losses['G_th1kh_ref_img_mae'] = self.masked_error_loss(gen_img['image'], img, batch['th1kh_ref_torso_masks'], mode='l1', unmasked_weight=0.5)
                losses['G_th1kh_ref_img_lpips'] = self.criterion_lpips(gen_img['image'], img).mean()
            else:
                losses['G_th1kh_ref_img_mae'] = (gen_img['image'] - img).abs().mean()
                losses['G_th1kh_ref_img_lpips'] = self.criterion_lpips(gen_img['image'], img).mean()
            
            # lip loss
            batch_size = len(gen_img['image'])
            lip_mse_loss = 0
            lip_lpips_loss = 0
            for i in range(batch_size):
                xmin, xmax, ymin, ymax = batch['th1kh_ref_lip_rects'][i]
                lip_tgt_imgs = img[i:i+1,:, ymin:ymax,xmin:xmax].contiguous()
                lip_pred_imgs = gen_img['image'][i:i+1,:, ymin:ymax,xmin:xmax].contiguous()
                lip_mse_loss = lip_mse_loss + 1/batch_size * (lip_pred_imgs - lip_tgt_imgs).abs().mean()
                try:
                    lip_lpips_loss = lip_lpips_loss + 1/batch_size * self.criterion_lpips(lip_pred_imgs, lip_tgt_imgs).mean()
                except: pass 
            losses['G_th1kh_ref_img_lip_mae'] = lip_mse_loss
            losses['G_th1kh_ref_img_lip_lpips'] = lip_lpips_loss

            disc_inp_img = {
                'image': gen_img['image'],
                'image_raw': gen_img['image_raw'],
            }
            gen_logits = self.forward_D(disc_inp_img, camera)
            losses['G_th1kh_ref_adv'] = torch.nn.functional.softplus(-gen_logits).mean()
            if hparams.get("add_ffhq_singe_disc", False):
                gen_logits = self.forward_ffhq_D(disc_inp_img, camera)
                losses['G_ffhq_ref_adv'] = torch.nn.functional.softplus(-gen_logits).mean()
        return losses

    def run_G_th1kh_src2tgt_image(self, batch):
        ret = {}
        losses = {}
        with torch.autograd.profiler.record_function('G_th1kh_mv_forward'):
            camera = batch['th1kh_mv_cameras']
            img = batch['th1kh_tgt_imgs']
            gen_img = self.forward_G(batch['th1kh_ref_head_imgs'], camera, cond={
                        'cond_cano': batch['th1kh_cano_secc'], 'cond_src': batch['th1kh_ref_secc'], 'cond_tgt': batch['th1kh_mv_secc'], 
                        'ref_torso_img': batch['th1kh_ref_torso_imgs'], 'bg_img': batch['th1kh_bg_imgs'],
                        'segmap': batch['th1kh_ref_segmaps'],
                        'kp_s':batch['th1kh_ref_kp'], 'kp_d': batch['th1kh_mv_kp'],
                        'target_torso_mask': batch['th1kh_mv_torso_masks_raw'],
                        }, ret=ret)
            if 'losses' in ret: losses.update(ret['losses'])
            
            losses['G_mv_plane_l1_mean'] = (gen_img['plane'][:,:]).detach().abs().mean()
            losses['G_mv_plane_l1_std'] = (gen_img['plane'][:,:]).detach().abs().std()
            if hparams.get("masked_error", True):
                # 之所以用L1不用MSE,原因是mse对mismatch的pixel loss过大,而导致面部细节被忽略,此外还有过模糊的问题
                # 对raw图像,因为deform的原因背景没法全黑,导致这部分mse过高,我们将其mask掉,只计算人脸部分
                losses['G_th1kh_mv_img_mae'] = self.masked_error_loss(gen_img['image'], img, batch['th1kh_mv_torso_masks'], mode='l1', unmasked_weight=0.5)
                losses['G_th1kh_mv_img_lpips'] = self.criterion_lpips(gen_img['image'], img).mean()
            else:
                losses['G_th1kh_mv_img_mae'] = (gen_img['image'] - img).abs().mean()
                losses['G_th1kh_mv_img_lpips'] = self.criterion_lpips(gen_img['image'], img).mean()
            
            # lip loss
            batch_size = len(gen_img['image'])
            lip_mse_loss = 0
            lip_lpips_loss = 0
            for i in range(batch_size):
                xmin, xmax, ymin, ymax = batch['th1kh_mv_lip_rects'][i]
                lip_tgt_imgs = img[i:i+1,:, ymin:ymax,xmin:xmax].contiguous()
                lip_pred_imgs = gen_img['image'][i:i+1,:, ymin:ymax,xmin:xmax].contiguous()
                lip_mse_loss = lip_mse_loss + 1/batch_size * (lip_pred_imgs - lip_tgt_imgs).abs().mean()
                try:
                    lip_lpips_loss = lip_lpips_loss + 1/batch_size * self.criterion_lpips(lip_pred_imgs, lip_tgt_imgs).mean()
                except: pass 
            losses['G_th1kh_mv_img_lip_mae'] = lip_mse_loss
            losses['G_th1kh_mv_img_lip_lpips'] = lip_lpips_loss

            self.gen_tmp_output['th1kh_recon_mv_imgs'] = gen_img['image'].detach()
            self.gen_tmp_output['th1kh_recon_mv_imgs_raw'] = gen_img['image_raw'].detach()
            disc_inp_img = {
                'image': gen_img['image'],
                'image_raw': gen_img['image_raw'],
            }
            gen_logits = self.forward_D(disc_inp_img, camera)
            losses['G_th1kh_mv_adv'] = torch.nn.functional.softplus(-gen_logits).mean()
        return losses

    def forward_D_main(self, batch):
        """
        we update ema this substep.
        """
        FFHQ_DISC_UPDATE_INTERVAL = 4
        losses = {}
        with torch.autograd.profiler.record_function('D_minimize_fake_forward'):
            if 'th1kh_recon_mv_imgs' in self.gen_tmp_output:
                camera = batch['th1kh_mv_cameras']
                disc_inp_img = {
                    'image': self.gen_tmp_output['th1kh_recon_mv_imgs'],
                    'image_raw': self.gen_tmp_output['th1kh_recon_mv_imgs_raw'],
                }
                gen_logits = self.forward_D(disc_inp_img, camera, update_emas=True)
                losses['D_minimize_th1kh_mv_fake'] = torch.nn.functional.softplus(gen_logits).mean()
                if hparams.get("add_ffhq_singe_disc", False) and (self.global_step+1) % FFHQ_DISC_UPDATE_INTERVAL == 0:
                    gen_logits = self.forward_ffhq_D(disc_inp_img, camera, update_emas=True)
                    losses['D_ffhq_minimize_model_pred_mv'] = torch.nn.functional.softplus(gen_logits).mean()

            mv_cameras = batch['th1kh_mv_cameras']
            mv_img_tmp_image = batch['th1kh_tgt_imgs'].detach().requires_grad_(True)
            mv_img_tmp_image_raw = batch['th1kh_mv_head_imgs_raw'].detach().requires_grad_(True)
            th1kh_mv_img_tmp = {'image': mv_img_tmp_image, 'image_raw': mv_img_tmp_image_raw}
            th1kh_mv_logits = self.forward_D(th1kh_mv_img_tmp, mv_cameras)
            losses['D_maximize_th1kh_mv'] = torch.nn.functional.softplus(-th1kh_mv_logits).mean()
            
            if hparams.get("add_ffhq_singe_disc", False) and (self.global_step+1) % FFHQ_DISC_UPDATE_INTERVAL == 0:
                ffhq_ref_img_tmp = {'image': batch['ffhq_com_imgs'].detach().requires_grad_(True),'image_raw': batch['ffhq_com_imgs_raw'].detach().requires_grad_(True)}
                ffhq_ref_logits = self.forward_ffhq_D(ffhq_ref_img_tmp, mv_cameras) # mv_camera will be mul 0 in forward_ffhq_D
                losses['D_ffhq_maximize_gt_ref'] = torch.nn.functional.softplus(-ffhq_ref_logits).mean()

            if (self.global_step+1) % hparams['reg_interval_d'] == 0 and self.training is True:
                with conv2d_gradfix.no_weight_gradients():
                    mv_r1_grads = torch.autograd.grad(outputs=[th1kh_mv_logits.sum()], inputs=[th1kh_mv_img_tmp['image'], th1kh_mv_img_tmp['image_raw']], create_graph=True, only_inputs=True)
                    mv_r1_grads_image = mv_r1_grads[0]
                    mv_r1_grads_image_raw = mv_r1_grads[1]
                    mv_r1_penalty_raw = mv_r1_grads_image_raw.square().sum([1,2,3]).mean()
                    mv_r1_penalty_image = mv_r1_grads_image.square().sum([1,2,3]).mean()
                    losses['D_th1kh_mv_gradient_penalty'] = (mv_r1_penalty_image + mv_r1_penalty_raw) / 2
                if hparams.get("add_ffhq_singe_disc", False) and (self.global_step+1) % FFHQ_DISC_UPDATE_INTERVAL == 0:
                    with conv2d_gradfix.no_weight_gradients():
                        ref_r1_grads = torch.autograd.grad(outputs=[ffhq_ref_logits.sum()], inputs=[ffhq_ref_img_tmp['image'], ffhq_ref_img_tmp['image_raw']], create_graph=True, only_inputs=True)
                        ref_r1_grads_image = ref_r1_grads[0]
                        ref_r1_grads_image_raw = ref_r1_grads[1]
                        ref_r1_penalty_raw = ref_r1_grads_image_raw.square().sum([1,2,3]).mean()
                        ref_r1_penalty_image = ref_r1_grads_image.square().sum([1,2,3]).mean()
                        losses['D_ffhq_gradient_penalty_gt_ref'] = (ref_r1_penalty_image + ref_r1_penalty_raw) / 2

        self.gen_tmp_output = {}
        return losses
    
    def _training_step(self, sample, batch_idx, optimizer_idx):
        if len(sample) == 0:
            return None 
        if optimizer_idx == 0:
            sample = self.prepare_batch(sample)
            self.cache_sample = sample
        else:
            sample = self.cache_sample

        losses = {}
        if optimizer_idx == 0:
            # Train Generator
            self.model.on_train_superresolution()

            losses.update(self.run_G_th1kh_src2src_image(sample))
            losses.update(self.run_G_th1kh_src2tgt_image(sample))
            loss_weights = {
            'G_th1kh_mv_img_mae': hparams['lambda_mse'],
            'G_th1kh_mv_img_lpips': 0.1,
            'G_th1kh_mv_adv': hparams['lambda_th1kh_mv_adv'] if self.global_step >= self.start_adv_iters else 0.,
            'G_th1kh_mv_img_lip_mae': 0.2,
            'G_th1kh_mv_img_lip_lpips': 0.02,

            'G_th1kh_ref_img_mae': hparams['lambda_mse'],
            'G_th1kh_ref_img_lpips': 0.1,
            'G_th1kh_ref_adv': hparams['lambda_th1kh_mv_adv'] if self.global_step >= self.start_adv_iters else 0.,
            'G_th1kh_ref_img_lip_mae': 0.2,
            'G_th1kh_ref_img_lip_lpips': 0.02,

            'facev2v/occlusion_reg_l1': hparams['lam_occlusion_reg_l1'],
            'facev2v/occlusion_2_reg_l1': hparams.get('lam_occlusion_2_reg_l1', 0.),
            'facev2v/occlusion_2_weights_entropy': hparams['lam_occlusion_weights_entropy'],
            }

        elif optimizer_idx == 1:
            # Train Disc
            if self.global_step < hparams["start_adv_iters"] - 10000:
                # start train disc too early is a waste of resource
                return None
            losses.update(self.forward_D_main(sample))
            loss_weights = {
                'D_maximize_ref': 1.0,
                'D_minimize_ref_fake': 1.0,
                'D_ref_gradient_penalty': hparams['lambda_gradient_penalty'] * hparams['reg_interval_d'],
                'D_maximize_mv': 1.0,
                'D_minimize_mv_fake': 1.0,
                'D_mv_gradient_penalty': hparams['lambda_gradient_penalty'] * hparams['reg_interval_d'],

                'D_maximize_th1kh_ref': 1.0,
                'D_minimize_th1kh_ref_fake': 1.0,
                'D_th1kh_ref_gradient_penalty': hparams['lambda_gradient_penalty'] * hparams['reg_interval_d'],
                'D_maximize_th1kh_mv': 1.0,
                'D_minimize_th1kh_mv_fake': 1.0,
                'D_th1kh_mv_gradient_penalty': hparams['lambda_gradient_penalty'] * hparams['reg_interval_d'],
            }
            self.gen_tmp_output = {}
        else:
            return None
        total_loss = sum([loss_weights[k] * v for k, v in losses.items() if isinstance(v, torch.Tensor) and v.requires_grad])
        # total_loss = sum([loss_weights.get(k, 1.0) * v for k, v in losses.items() if isinstance(v, torch.Tensor) and v.requires_grad])
        if len(losses) == 0:
            return None
        return total_loss, losses
    
    #####################
    # Validation
    #####################
    def validation_start(self):
        secc_img2plane_ckpt_dir = hparams.get('reload_head_ckpt', '')
        if secc_img2plane_ckpt_dir != '':
            load_ckpt(self.model.cano_img2plane_backbone, secc_img2plane_ckpt_dir, model_name='model.cano_img2plane_backbone', strict=True)
            load_ckpt(self.model.secc_img2plane_backbone, secc_img2plane_ckpt_dir, model_name='model.secc_img2plane_backbone', strict=True)
            load_ckpt(self.model.decoder, secc_img2plane_ckpt_dir, model_name='model.decoder', strict=True)

        if self.global_step % hparams['valid_infer_interval'] == 0:
            self.gen_dir = os.path.join(hparams['work_dir'], f'validation_results')
            os.makedirs(self.gen_dir, exist_ok=True)

    @torch.no_grad()
    def validation_step(self, sample, batch_idx):
        outputs = {}
        losses = {}
        if len(sample) == 0:
            return None
        sample = self.prepare_batch(sample)
        rank = 0 if len(set(os.environ['CUDA_VISIBLE_DEVICES'].split(","))) == 1 else dist.get_rank()

        losses.update(self.run_G_th1kh_src2tgt_image(sample))
        losses.update(self.run_G_reg(sample))
        losses.update(self.forward_D_main(sample))
        outputs['losses'] = losses
        outputs['total_loss'] = sum(outputs['losses'].values())
        outputs = tensors_to_scalars(outputs)

        if self.global_step % hparams['valid_infer_interval'] == 0 \
                and batch_idx < hparams['num_valid_plots'] and rank == 0:

            imgs_ref = sample['th1kh_ref_head_imgs']
            gen_img = self.model.forward(imgs_ref, sample['th1kh_mv_cameras'], cond={'cond_cano': sample['th1kh_cano_secc'],'cond_src': sample['th1kh_ref_secc'], 'cond_tgt': sample['th1kh_mv_secc'],'ref_torso_img': sample['th1kh_ref_torso_imgs'], 'bg_img': sample['th1kh_bg_imgs'],
                        'segmap': sample['th1kh_ref_segmaps'], 'kp_s':sample['th1kh_ref_kp'], 'kp_d': sample['th1kh_mv_kp']}, noise_mode='const')
            gen_img_recon = self.model.forward(imgs_ref, sample['th1kh_ref_cameras'], cond={'cond_cano': sample['th1kh_cano_secc'], 'cond_src': sample['th1kh_ref_secc'], 'cond_tgt': sample['th1kh_ref_secc'],'ref_torso_img': sample['th1kh_ref_torso_imgs'], 'bg_img': sample['th1kh_bg_imgs'],
                        'segmap': sample['th1kh_ref_segmaps'], 'kp_s':sample['th1kh_ref_kp'], 'kp_d': sample['th1kh_ref_kp']}, noise_mode='const')

            imgs_recon = gen_img_recon['image'].permute(0, 2,3,1)
            imgs_recon_raw = filtered_resizing(gen_img_recon['image_raw'], size=512, f=self.resample_filter, filter_mode='antialiased').permute(0, 2,3,1)
            imgs_recon_depth = gen_img_recon['image_depth'].permute(0, 2,3,1)
            imgs_pred_raw = filtered_resizing(gen_img['image_raw'], size=512, f=self.resample_filter, filter_mode='antialiased').permute(0, 2,3,1)
            imgs_pred = gen_img['image'].permute(0, 2,3,1)
            imgs_pred_depth = gen_img['image_depth'].permute(0, 2,3,1)
            imgs_ref = imgs_ref.permute(0,2,3,1)
            imgs_mv = sample['th1kh_tgt_imgs'].permute(0,2,3,1) # [B, H, W, 3]
            imgs_ref_com = sample['th1kh_ref_com_imgs'].permute(0,2,3,1) # [B, H, W, 3]

            for i in range(len(imgs_pred)):
                idx_string = format(i+batch_idx * hparams['batch_size'], "05d")
                base_fn = f"{idx_string}"
                img_ref_mv_recon_pred = torch.cat([imgs_ref_com[i], imgs_mv[i], imgs_recon_raw[i], imgs_pred_raw[i], imgs_recon[i], imgs_pred[i]], dim=1)
                ref_secc = filtered_resizing(sample['th1kh_ref_secc'][i].unsqueeze(0), size=512, f=self.resample_filter, filter_mode='antialiased')[0].permute(1,2,0)
                mv_secc = filtered_resizing(sample['th1kh_mv_secc'][i].unsqueeze(0), size=512, f=self.resample_filter, filter_mode='antialiased')[0].permute(1,2,0)
                img_ref_mv_recon_pred = torch.cat([img_ref_mv_recon_pred, ref_secc, mv_secc], dim=1)
                self.save_rgb_to_fname(img_ref_mv_recon_pred, f"{self.gen_dir}/th1kh_images_rgb_iter{self.global_step}/ref_mv_reconraw_predraw_recon_pred_{base_fn}.png")
                img_depth_recon_pred = torch.cat([imgs_recon_depth[i], imgs_pred_depth[i]], dim=1)
                self.save_depth_to_fname(img_depth_recon_pred, f"{self.gen_dir}/th1kh_images_depth_iter{self.global_step}/recon_pred_{base_fn}.png") 
        return outputs

    def validation_end(self, outputs):
        return super().validation_end(outputs)