|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
import torch.distributed as dist |
|
import os |
|
import random |
|
import copy |
|
import cv2 |
|
import math |
|
import lpips |
|
|
|
from utils.commons.hparams import hparams |
|
from utils.commons.tensor_utils import tensors_to_scalars, convert_to_np, move_to_cuda |
|
from utils.nn.model_utils import not_requires_grad, num_params |
|
from utils.commons.dataset_utils import data_loader |
|
from utils.nn.schedulers import NoneSchedule |
|
from utils.commons.ckpt_utils import load_ckpt, get_last_checkpoint, restore_weights, restore_opt_state |
|
|
|
from tasks.os_avatar.loss_utils.vgg19_loss import VGG19Loss |
|
from tasks.os_avatar.dataset_utils.motion2video_dataset import Motion2Video_Dataset |
|
|
|
from tasks.os_avatar.img2plane_task import OSAvatarImg2PlaneTask |
|
|
|
from modules.eg3ds.models.triplane import TriPlaneGenerator |
|
from modules.eg3ds.models.dual_discriminator import DualDiscriminator, SingleDiscriminator |
|
from modules.eg3ds.torch_utils.ops import conv2d_gradfix |
|
from modules.eg3ds.torch_utils.ops import upfirdn2d |
|
from modules.eg3ds.models.dual_discriminator import filtered_resizing |
|
from modules.real3d.secc_img2plane import OSAvatarSECC_Img2plane |
|
|
|
from deep_3drecon.secc_renderer import SECC_Renderer |
|
from data_util.face3d_helper import Face3DHelper |
|
from data_gen.utils.mp_feature_extractors.mp_segmenter import MediapipeSegmenter |
|
from data_gen.runs.binarizer_nerf import get_lip_rect |
|
|
|
from inference.infer_utils import mirror_index, load_img_to_512_hwc_array, load_img_to_normalized_512_bchw_tensor |
|
from inference.edit_secc import blink_eye_for_secc |
|
|
|
|
|
class ScheduleForLM3DImg2PlaneEG3D(NoneSchedule): |
|
def __init__(self, optimizer, lr, lr_d, warmup_updates=0): |
|
self.optimizer = optimizer |
|
self.constant_lr = self.lr = lr |
|
self.lr_d = lr_d |
|
self.warmup_updates = warmup_updates |
|
self.step(0) |
|
|
|
def step(self, num_updates): |
|
constant_lr = self.constant_lr |
|
if self.warmup_updates > 0 and num_updates <= self.warmup_updates: |
|
warmup = min(num_updates / self.warmup_updates, 1.0) |
|
self.lr = max(constant_lr * warmup, 1e-7) |
|
else: |
|
self.lr = constant_lr |
|
|
|
for optim_i in range(len(self.optimizer)-1): |
|
lr_mul_cano_img2plane = hparams['lr_mul_cano_img2plane'] * min(1.0, num_updates / (hparams['start_adv_iters']+20000)) |
|
self.optimizer[optim_i].param_groups[0]['lr'] = lr_mul_cano_img2plane * self.lr * (hparams.get("lr_decay_rate", 0.95)) ** (num_updates // hparams.get("lr_decay_interval", 5_000)) if num_updates > 6_000 else 0 |
|
self.optimizer[optim_i].param_groups[0]['lr'] = max(5e-6, self.optimizer[optim_i].param_groups[0]['lr']) |
|
if num_updates >= hparams['stop_update_i2p_iters']: |
|
self.optimizer[optim_i].param_groups[0]['lr'] = 0. |
|
self.optimizer[optim_i].param_groups[1]['lr'] = max(5e-6, self.lr * (hparams.get("lr_decay_rate", 0.95)) ** (num_updates // hparams.get("lr_decay_interval", 5_000))) if num_updates > 0 else 0 |
|
self.optimizer[optim_i].param_groups[2]['lr'] = max(5e-6, self.lr * (hparams.get("lr_decay_rate", 0.95)) ** (num_updates // hparams.get("lr_decay_interval", 5_000))) if num_updates > 6_000 else 0 |
|
self.optimizer[optim_i].param_groups[3]['lr'] = max(5e-6, self.lr * (hparams.get("lr_decay_rate", 0.95)) ** (num_updates // hparams.get("lr_decay_interval", 5_000))) if num_updates > 30_000 else 0 |
|
self.optimizer[-1].param_groups[0]['lr'] = max(5e-6, self.lr_d * (hparams.get("lr_decay_rate", 0.95)) ** (num_updates // hparams.get("lr_decay_interval", 5_000))) |
|
return self.lr |
|
|
|
|
|
class SECC_Img2PlaneEG3DTask(OSAvatarImg2PlaneTask): |
|
def __init__(self): |
|
super().__init__() |
|
self.seg_model = MediapipeSegmenter() |
|
self.dataset_cls = Motion2Video_Dataset |
|
self.face3d_helper = Face3DHelper(use_gpu=True, keypoint_mode='lm68') |
|
|
|
def build_model(self): |
|
self.eg3d_model = TriPlaneGenerator() |
|
load_ckpt(self.eg3d_model, hparams['pretrained_eg3d_ckpt'], strict=True) |
|
self.model = OSAvatarSECC_Img2plane() |
|
self.disc = DualDiscriminator() |
|
|
|
self.cano_img2plane_params = [p for k, p in self.model.cano_img2plane_backbone.named_parameters() if p.requires_grad] |
|
self.secc_img2plane_params = [p for k, p in self.model.secc_img2plane_backbone.named_parameters() if p.requires_grad] |
|
self.decoder_params = [p for p in self.model.decoder.parameters() if p.requires_grad] |
|
self.upsample_params = [p for p in self.model.superresolution.parameters() if p.requires_grad] |
|
self.disc_params = [p for k, p in self.disc.named_parameters() if p.requires_grad] |
|
|
|
if hparams.get("add_ffhq_singe_disc", False): |
|
self.ffhq_disc = DualDiscriminator() |
|
self.disc_params += [p for k, p in self.ffhq_disc.named_parameters() if p.requires_grad] |
|
eg3d_dir = 'checkpoints/geneface2_ckpts/eg3d_baseline_run2' |
|
load_ckpt(self.ffhq_disc, eg3d_dir, model_name='disc', strict=True) |
|
self.secc_renderer = SECC_Renderer(512) |
|
|
|
if hparams.get('init_from_ckpt', '') != '': |
|
ckpt_dir = hparams['init_from_ckpt'] |
|
try: |
|
load_ckpt(self.model.cano_img2plane_backbone, ckpt_dir, model_name='model.cano_img2plane_backbone', strict=True) |
|
load_ckpt(self.model.secc_img2plane_backbone, ckpt_dir, model_name='model.secc_img2plane_backbone', strict=True) |
|
except: |
|
|
|
load_ckpt(self.model.cano_img2plane_backbone, ckpt_dir, model_name='model.img2plane_backbone', strict=False) |
|
|
|
load_ckpt(self.model.decoder, ckpt_dir, model_name='model.decoder', strict=True) |
|
load_ckpt(self.model.superresolution, ckpt_dir, model_name='model.superresolution', strict=False) |
|
load_ckpt(self.disc, ckpt_dir, model_name='disc', strict=True) |
|
|
|
return self.model |
|
|
|
def build_optimizer(self, model): |
|
self.optimizer_gen = optimizer_gen = torch.optim.Adam( |
|
self.cano_img2plane_params, |
|
lr=hparams['lr_g'], |
|
betas=(hparams['optimizer_adam_beta1_g'], hparams['optimizer_adam_beta2_g']) |
|
) |
|
self.optimizer_gen.add_param_group({ |
|
'params': self.secc_img2plane_params, |
|
'lr': hparams['lr_g'], |
|
'betas': (hparams['optimizer_adam_beta1_g'], hparams['optimizer_adam_beta2_g']) |
|
}) |
|
self.optimizer_gen.add_param_group({ |
|
'params': self.decoder_params, |
|
'lr': hparams['lr_g'], |
|
'betas': (hparams['optimizer_adam_beta1_g'], hparams['optimizer_adam_beta2_g']) |
|
}) |
|
self.optimizer_gen.add_param_group({ |
|
'params': self.upsample_params, |
|
'lr': hparams['lr_g'], |
|
'betas': (hparams['optimizer_adam_beta1_g'], hparams['optimizer_adam_beta2_g']) |
|
}) |
|
|
|
mb_ratio_d = hparams['reg_interval_d'] / (hparams['reg_interval_d'] + 1) |
|
self.optimizer_disc = optimizer_disc = torch.optim.Adam( |
|
self.disc_params, |
|
lr=hparams['lr_d'] * mb_ratio_d, |
|
betas=(hparams['optimizer_adam_beta1_d'] ** mb_ratio_d, hparams['optimizer_adam_beta2_d'] ** mb_ratio_d)) |
|
optimizers = [optimizer_gen, optimizer_disc] |
|
return optimizers |
|
|
|
def build_scheduler(self, optimizer): |
|
mb_ratio_d = hparams['reg_interval_d'] / (hparams['reg_interval_d'] + 1) |
|
return ScheduleForLM3DImg2PlaneEG3D(optimizer, hparams['lr_g'], hparams['lr_d'] * mb_ratio_d, hparams['warmup_updates']) |
|
|
|
def forward_G(self, img, camera, cond=None, ret=None, update_emas=False, cache_backbone=True, use_cached_backbone=False): |
|
""" |
|
ref_img: [B, 3, W, H] |
|
camera: [b, 25], 16 dim c2w, and 9 dim intrinsic |
|
cond: a dict of cano_secc, tgt_secc, src_secc |
|
""" |
|
G = self.model |
|
gen_output = G.forward(img=img, camera=camera, cond=cond, ret=ret, update_emas=update_emas, cache_backbone=cache_backbone, use_cached_backbone=use_cached_backbone) |
|
return gen_output |
|
|
|
def forward_D(self, img, camera, update_emas=False): |
|
D = self.disc |
|
logits = D.forward(img, camera, update_emas=update_emas) |
|
return logits |
|
|
|
def forward_ffhq_D(self, img, camera, update_emas=False): |
|
D = self.ffhq_disc |
|
logits = D.forward(img, 0*camera, update_emas=update_emas) |
|
return logits |
|
|
|
def prepare_batch(self, batch): |
|
out_batch = {} |
|
out_batch['th1kh_ref_cameras'] = batch['th1kh_ref_cameras'] |
|
out_batch['th1kh_ref_head_imgs'] = batch['th1kh_ref_head_imgs'] |
|
out_batch['th1kh_ref_head_imgs_raw'] = filtered_resizing(batch['th1kh_ref_head_imgs'], size=hparams['neural_rendering_resolution'], f=self.resample_filter, filter_mode='antialiased') |
|
out_batch['th1kh_mv_cameras'] = batch['th1kh_mv_cameras'] |
|
out_batch['th1kh_mv_head_imgs'] = batch['th1kh_mv_head_imgs'] |
|
out_batch['th1kh_mv_head_imgs_raw'] = filtered_resizing(batch['th1kh_mv_head_imgs'], size=hparams['neural_rendering_resolution'], f=self.resample_filter, filter_mode='antialiased') |
|
|
|
out_batch['th1kh_ref_eulers'] = batch['th1kh_ref_eulers'] |
|
out_batch['th1kh_ref_trans'] = batch['th1kh_ref_trans'] |
|
with torch.no_grad(): |
|
_, out_batch['th1kh_cano_secc'] = self.secc_renderer(batch['th1kh_ref_ids'],batch['th1kh_ref_exps']*0,batch['th1kh_ref_eulers']*0,batch['th1kh_ref_trans']*0) |
|
_, out_batch['th1kh_ref_secc'] = self.secc_renderer(batch['th1kh_ref_ids'],batch['th1kh_ref_exps'],batch['th1kh_ref_eulers']*0,batch['th1kh_ref_trans']*0) |
|
_, out_batch['th1kh_mv_secc'] = self.secc_renderer(batch['th1kh_mv_ids'],batch['th1kh_mv_exps'],batch['th1kh_mv_eulers']*0,batch['th1kh_mv_trans']*0) |
|
|
|
if (self.global_step+1) % hparams['reg_interval_g_cond'] == 0: |
|
if random.random() < hparams.get("pertube_ref_prob", 0.25): |
|
out_batch['th1kh_pertube_secc0'] = out_batch['th1kh_ref_secc'].clone() |
|
if hparams.get("secc_pertube_mode", 'randn') == 'randn': |
|
_, out_batch['th1kh_pertube_secc1'] = self.secc_renderer(batch['th1kh_ref_ids'] + torch.randn_like(batch['th1kh_ref_ids'])*hparams['secc_pertube_randn_scale'],batch['th1kh_ref_exps'] + torch.randn_like(batch['th1kh_ref_exps'])*hparams['secc_pertube_randn_scale'] ,batch['th1kh_ref_eulers']*0,batch['th1kh_ref_trans']*0) |
|
elif hparams.get("secc_pertube_mode", 'randn') in ['tv', 'laplacian']: |
|
_, out_batch['th1kh_pertube_secc1'] = self.secc_renderer(batch['th1kh_ref_ids'],batch['th1kh_ref_pertube_exps_1'],batch['th1kh_ref_eulers']*0,batch['th1kh_ref_trans']*0) |
|
_, out_batch['th1kh_pertube_secc2'] = self.secc_renderer(batch['th1kh_ref_ids'],batch['th1kh_ref_pertube_exps_2'],batch['th1kh_ref_eulers']*0,batch['th1kh_ref_trans']*0) |
|
else: |
|
raise NotImplementedError() |
|
else: |
|
out_batch['th1kh_pertube_secc0'] = out_batch['th1kh_mv_secc'] |
|
if hparams.get("secc_pertube_mode", 'randn') == 'randn': |
|
_, out_batch['th1kh_pertube_secc1'] = self.secc_renderer(batch['th1kh_mv_ids'] + torch.randn_like(batch['th1kh_mv_ids'])*hparams['secc_pertube_randn_scale'],batch['th1kh_mv_exps'] + torch.randn_like(batch['th1kh_mv_exps'])*hparams['secc_pertube_randn_scale'] ,batch['th1kh_mv_eulers']*0,batch['th1kh_mv_trans']*0) |
|
elif hparams.get("secc_pertube_mode", 'randn') in ['tv', 'laplacian']: |
|
_, out_batch['th1kh_pertube_secc1'] = self.secc_renderer(batch['th1kh_mv_ids'],batch['th1kh_mv_pertube_exps_1'],batch['th1kh_mv_eulers']*0,batch['th1kh_mv_trans']*0) |
|
_, out_batch['th1kh_pertube_secc2'] = self.secc_renderer(batch['th1kh_mv_ids'],batch['th1kh_mv_pertube_exps_2'],batch['th1kh_mv_eulers']*0,batch['th1kh_mv_trans']*0) |
|
else: |
|
raise NotImplementedError() |
|
|
|
if (self.global_step+1) % hparams['reg_interval_g_cond'] == 0: |
|
blink_secc_lst1 = [] |
|
blink_secc_lst2 = [] |
|
blink_secc_lst3 = [] |
|
for i in range(len(out_batch['th1kh_mv_secc'])): |
|
if random.random() < 0.25: |
|
secc = out_batch['th1kh_ref_secc'][i] |
|
else: |
|
secc = out_batch['th1kh_mv_secc'][i] |
|
blink_percent1 = random.random() * 0.5 |
|
blink_percent3 = 0.5 + random.random() * 0.5 |
|
blink_percent2 = (blink_percent1 + blink_percent3)/2 |
|
try: |
|
out_secc1 = blink_eye_for_secc(secc, blink_percent1).to(secc.device) |
|
out_secc2 = blink_eye_for_secc(secc, blink_percent2).to(secc.device) |
|
out_secc3 = blink_eye_for_secc(secc, blink_percent3).to(secc.device) |
|
except: |
|
print("blink eye for secc failed, use original secc") |
|
out_secc1 = copy.deepcopy(secc) |
|
out_secc2 = copy.deepcopy(secc) |
|
out_secc3 = copy.deepcopy(secc) |
|
blink_secc_lst1.append(out_secc1) |
|
blink_secc_lst2.append(out_secc2) |
|
blink_secc_lst3.append(out_secc3) |
|
out_batch['th1kh_blink_mv_secc1'] = torch.stack(blink_secc_lst1) |
|
out_batch['th1kh_blink_mv_secc2'] = torch.stack(blink_secc_lst2) |
|
out_batch['th1kh_blink_mv_secc3'] = torch.stack(blink_secc_lst3) |
|
|
|
out_batch['th1kh_ref_head_masks'] = batch['th1kh_ref_head_masks'].unsqueeze(1).bool() |
|
out_batch['th1kh_ref_head_masks_raw'] = torch.nn.functional.interpolate(out_batch['th1kh_ref_head_masks'].float(), size=(128,128), mode='nearest').bool() |
|
|
|
out_batch['th1kh_ref_head_masks_dilate'] = self.dilate_mask(out_batch['th1kh_ref_head_masks'].float(), ksize=41).bool() |
|
out_batch['th1kh_ref_head_masks_raw_dilate'] = torch.nn.functional.interpolate(out_batch['th1kh_ref_head_masks_dilate'].float(), size=(128,128), mode='nearest').bool() |
|
|
|
out_batch['th1kh_mv_head_masks'] = batch['th1kh_mv_head_masks'].unsqueeze(1).bool() |
|
out_batch['th1kh_mv_head_masks_raw'] = torch.nn.functional.interpolate(out_batch['th1kh_mv_head_masks'].float(), size=(128,128), mode='nearest').bool() |
|
|
|
out_batch['th1kh_mv_head_masks_dilate'] = self.dilate_mask(out_batch['th1kh_mv_head_masks'].float(), ksize=41).long() |
|
out_batch['th1kh_mv_head_masks_raw_dilate'] = torch.nn.functional.interpolate(out_batch['th1kh_mv_head_masks_dilate'].float(), size=(128,128), mode='nearest').bool() |
|
|
|
WH = 512 |
|
ref_lm2ds = WH * self.face3d_helper.reconstruct_lm2d(batch['th1kh_ref_ids'],batch['th1kh_ref_exps'],batch['th1kh_ref_eulers'],batch['th1kh_ref_trans']).cpu().numpy() |
|
mv_lm2ds = WH * self.face3d_helper.reconstruct_lm2d(batch['th1kh_mv_ids'],batch['th1kh_mv_exps'],batch['th1kh_mv_eulers'],batch['th1kh_mv_trans']).cpu().numpy() |
|
ref_lip_rects = [get_lip_rect(ref_lm2ds[i], WH, WH) for i in range(len(ref_lm2ds))] |
|
mv_lip_rects = [get_lip_rect(mv_lm2ds[i], WH, WH) for i in range(len(mv_lm2ds))] |
|
out_batch['th1kh_ref_lip_rects'] = ref_lip_rects |
|
out_batch['th1kh_mv_lip_rects'] = mv_lip_rects |
|
|
|
return out_batch |
|
|
|
def run_G_th1kh_src2src_image(self, batch): |
|
""" |
|
不在src2src上训练会导致画质变差、不像说话人, 这很合理, 因为i2p也是这样需要update on ref_mse |
|
尤其是在靠近src的画质变好, 但同时会导致depth和color在靠近src的时候闪烁. |
|
解决方法: 算secc2plane pertube loss的时候, 更频繁地在src secc附近计算loss; target到更小的pertube loss |
|
""" |
|
|
|
losses = {} |
|
ret = {} |
|
ret['losses'] = {} |
|
|
|
if self.global_step % hparams['update_src2src_interval'] != 0: |
|
return losses |
|
|
|
with torch.autograd.profiler.record_function('G_th1kh_ref_forward'): |
|
camera = batch['th1kh_ref_cameras'] |
|
img = batch['th1kh_ref_head_imgs'] |
|
img_raw = batch['th1kh_ref_head_imgs_raw'] |
|
|
|
gen_img = self.forward_G(batch['th1kh_ref_head_imgs'], camera, |
|
cond={'cond_cano': batch['th1kh_cano_secc'], |
|
'cond_src': batch['th1kh_ref_secc'], |
|
'cond_tgt': batch['th1kh_ref_secc'], |
|
'ref_head_img': batch['th1kh_ref_head_imgs'], |
|
'ref_alphas': batch['th1kh_ref_head_masks'].float(), |
|
'ref_cameras': batch['th1kh_ref_cameras'], |
|
}, |
|
ret=ret) |
|
losses.update(ret['losses']) |
|
|
|
if hparams.get("masked_error", True): |
|
|
|
|
|
|
|
losses['G_th1kh_ref_img_mae_raw'] = self.masked_error_loss(gen_img['image_raw'], img_raw, batch['th1kh_ref_head_masks_raw_dilate'], mode='l1', unmasked_weight=0.2) |
|
losses['G_th1kh_ref_img_mae'] = self.masked_error_loss(gen_img['image'], img, batch['th1kh_ref_head_masks_dilate'], mode='l1', unmasked_weight=0.2) |
|
pred_img_for_vgg = gen_img['image'] |
|
pred_img_raw_for_vgg = gen_img['image_raw'] |
|
losses['G_th1kh_ref_img_lpips'] = self.criterion_lpips(pred_img_for_vgg, img).mean() |
|
losses['G_th1kh_ref_img_lpips_raw'] = self.criterion_lpips(pred_img_raw_for_vgg, img_raw).mean() |
|
disc_inp_img = { |
|
'image': pred_img_for_vgg, |
|
'image_raw': pred_img_raw_for_vgg, |
|
} |
|
|
|
batch_size = len(gen_img['image']) |
|
lip_mse_loss = 0 |
|
lip_lpips_loss = 0 |
|
for i in range(batch_size): |
|
xmin, xmax, ymin, ymax = batch['th1kh_ref_lip_rects'][i] |
|
lip_tgt_imgs = img[i:i+1,:, ymin:ymax,xmin:xmax].contiguous() |
|
lip_pred_imgs = pred_img_for_vgg[i:i+1,:, ymin:ymax,xmin:xmax].contiguous() |
|
lip_mse_loss = lip_mse_loss + 1/batch_size * (lip_pred_imgs - lip_tgt_imgs).abs().mean() |
|
try: |
|
lip_lpips_loss = lip_lpips_loss + 1/batch_size * self.criterion_lpips(lip_pred_imgs, lip_tgt_imgs).mean() |
|
except: pass |
|
losses['G_th1kh_ref_img_lip_mae'] = lip_mse_loss |
|
losses['G_th1kh_ref_img_lip_lpips'] = lip_lpips_loss |
|
|
|
else: |
|
losses['G_th1kh_ref_img_mae_raw'] = (gen_img['image_raw'] - img_raw).abs().mean() |
|
losses['G_th1kh_ref_img_mae'] = (gen_img['image'] - img).abs().mean() |
|
losses['G_th1kh_ref_img_lpips'] = self.criterion_lpips(gen_img['image'], img).mean() |
|
losses['G_th1kh_ref_img_lpips_raw'] = self.criterion_lpips(gen_img['image_raw'], img_raw).mean() |
|
disc_inp_img = { |
|
'image': gen_img['image'], |
|
'image_raw': gen_img['image_raw'], |
|
} |
|
|
|
|
|
alphas = gen_img['weights_img'].clamp(1e-5, 1 - 1e-5) |
|
losses['G_th1kh_ref_weights_entropy_loss'] = torch.mean(- alphas * torch.log2(alphas) - (1 - alphas) * torch.log2(1 - alphas)) |
|
face_mask = batch['th1kh_ref_head_masks_raw'].bool() |
|
nonface_mask = ~ batch['th1kh_ref_head_masks_raw'].bool() |
|
losses['G_th1kh_ref_weights_l1_loss'] = (alphas[nonface_mask]-0).pow(2).mean() + (alphas[face_mask]-1).pow(2).mean() |
|
|
|
gen_logits = self.forward_D(disc_inp_img, camera) |
|
losses['G_th1kh_ref_adv'] = torch.nn.functional.softplus(-gen_logits).mean() |
|
return losses |
|
|
|
def run_G_th1kh_src2tgt_image(self, batch): |
|
losses = {} |
|
ret = {} |
|
ret['losses'] = {} |
|
with torch.autograd.profiler.record_function('G_th1kh_mv_forward'): |
|
camera = batch['th1kh_mv_cameras'] |
|
img = batch['th1kh_mv_head_imgs'] |
|
img_raw = batch['th1kh_mv_head_imgs_raw'] |
|
|
|
gen_img = self.forward_G(batch['th1kh_ref_head_imgs'], camera, |
|
cond={'cond_cano': batch['th1kh_cano_secc'], |
|
'cond_src': batch['th1kh_ref_secc'], |
|
'cond_tgt': batch['th1kh_mv_secc'], |
|
'ref_head_img': batch['th1kh_ref_head_imgs'], |
|
'ref_alphas': batch['th1kh_ref_head_masks'].float(), |
|
'ref_cameras': batch['th1kh_ref_cameras'], |
|
}, |
|
ret=ret) |
|
losses.update(ret['losses']) |
|
self.gen_tmp_output['th1kh_recon_mv_imgs'] = gen_img['image'].detach() |
|
self.gen_tmp_output['th1kh_recon_mv_imgs_raw'] = gen_img['image_raw'].detach() |
|
losses['G_ref_plane_l1_mean'] = (gen_img['plane'][:,:]).detach().abs().mean() |
|
losses['G_ref_plane_l1_std'] = (gen_img['plane'][:,:]).detach().abs().std() |
|
|
|
if hparams.get("masked_error", True): |
|
|
|
|
|
losses['G_th1kh_mv_img_mae_raw'] = self.masked_error_loss(gen_img['image_raw'], img_raw, batch['th1kh_mv_head_masks_raw_dilate'], mode='l1', unmasked_weight=0.2) |
|
losses['G_th1kh_mv_img_mae'] = self.masked_error_loss(gen_img['image'], img, batch['th1kh_mv_head_masks_dilate'], mode='l1', unmasked_weight=0.2) |
|
pred_img_for_vgg = gen_img['image'] |
|
pred_img_raw_for_vgg = gen_img['image_raw'] |
|
losses['G_th1kh_mv_img_lpips'] = self.criterion_lpips(pred_img_for_vgg, img).mean() |
|
losses['G_th1kh_mv_img_lpips_raw'] = self.criterion_lpips(pred_img_raw_for_vgg, img_raw).mean() |
|
|
|
|
|
batch_size = len(gen_img['image']) |
|
lip_mse_loss = 0 |
|
lip_lpips_loss = 0 |
|
for i in range(batch_size): |
|
xmin, xmax, ymin, ymax = batch['th1kh_mv_lip_rects'][i] |
|
lip_tgt_imgs = img[i:i+1,:, ymin:ymax,xmin:xmax].contiguous() |
|
lip_pred_imgs = pred_img_for_vgg[i:i+1,:, ymin:ymax,xmin:xmax].contiguous() |
|
lip_mse_loss = lip_mse_loss + 1/batch_size * (lip_pred_imgs - lip_tgt_imgs).abs().mean() |
|
try: |
|
lip_lpips_loss = lip_lpips_loss + 1/batch_size * self.criterion_lpips(lip_pred_imgs, lip_tgt_imgs).mean() |
|
except: pass |
|
losses['G_th1kh_mv_img_lip_mae'] = lip_mse_loss |
|
losses['G_th1kh_mv_img_lip_lpips'] = lip_lpips_loss |
|
|
|
self.gen_tmp_output['th1kh_recon_mv_imgs'] = pred_img_for_vgg.detach() |
|
self.gen_tmp_output['th1kh_recon_mv_imgs_raw'] = pred_img_raw_for_vgg.detach() |
|
disc_inp_img = { |
|
'image': pred_img_for_vgg, |
|
'image_raw': pred_img_raw_for_vgg, |
|
} |
|
|
|
else: |
|
losses['G_th1kh_mv_img_mae_raw'] = (gen_img['image_raw'] - img_raw).abs().mean() |
|
losses['G_th1kh_mv_img_mae'] = (gen_img['image'] - img).abs().mean() |
|
losses['G_th1kh_mv_img_lpips'] = self.criterion_lpips(gen_img['image'], img).mean() |
|
losses['G_th1kh_mv_img_lpips_raw'] = self.criterion_lpips(gen_img['image_raw'], img_raw).mean() |
|
disc_inp_img = { |
|
'image': gen_img['image'], |
|
'image_raw': gen_img['image_raw'], |
|
} |
|
|
|
alphas = gen_img['weights_img'].clamp(1e-5, 1 - 1e-5) |
|
losses['G_th1kh_mv_weights_entropy_loss'] = torch.mean(- alphas * torch.log2(alphas) - (1 - alphas) * torch.log2(1 - alphas)) |
|
face_mask = batch['th1kh_mv_head_masks_raw'].bool() |
|
nonface_mask = ~ batch['th1kh_mv_head_masks_raw'].bool() |
|
losses['G_th1kh_mv_weights_l1_loss'] = (alphas[nonface_mask]-0).pow(2).mean() + (alphas[face_mask]-1).pow(2).mean() |
|
|
|
gen_logits = self.forward_D(disc_inp_img, camera) |
|
losses['G_th1kh_mv_adv'] = torch.nn.functional.softplus(-gen_logits).mean() |
|
if hparams.get("add_ffhq_singe_disc", False): |
|
gen_logits = self.forward_ffhq_D(disc_inp_img, camera) |
|
losses['G_ffhq_adv_maxmimize_model_pred_mv'] = torch.nn.functional.softplus(-gen_logits).mean() |
|
return losses |
|
|
|
def run_G_reg(self, batch): |
|
losses = {} |
|
imgs = batch['th1kh_ref_head_imgs'] |
|
if (self.global_step+1) % hparams['reg_interval_g'] == 0: |
|
with torch.autograd.profiler.record_function('G_regularize_forward'): |
|
cond={'cond_cano': batch['th1kh_cano_secc'], |
|
'cond_src': batch['th1kh_ref_secc'], |
|
'cond_tgt': batch['th1kh_mv_secc'], |
|
'ref_cameras': batch['th1kh_ref_cameras'], |
|
'ref_alphas': batch['th1kh_ref_head_masks'].float(), |
|
} |
|
initial_coordinates = torch.rand((imgs.shape[0], 1000, 3), device=imgs.device) - 0.5 |
|
perturbed_coordinates = initial_coordinates + torch.randn_like(initial_coordinates) * 5e-3 |
|
all_coordinates = torch.cat([initial_coordinates, perturbed_coordinates], dim=1) |
|
source_sigma = self.model.sample(coordinates=all_coordinates, directions=torch.randn_like(all_coordinates), img=imgs, cond=cond, update_emas=False)['sigma'] |
|
source_sigma_initial = source_sigma[:, :source_sigma.shape[1]//2] |
|
source_sigma_perturbed = source_sigma[:, source_sigma.shape[1]//2:] |
|
density_reg_loss = torch.nn.functional.l1_loss(source_sigma_initial, source_sigma_perturbed) |
|
|
|
|
|
losses['G_th1kh_regularize_density_l1'] = density_reg_loss |
|
|
|
return losses |
|
|
|
def run_G_reg_cond(self, batch): |
|
losses = {} |
|
if (self.global_step+1) % hparams['reg_interval_g_cond'] == 0: |
|
|
|
cond = {'cond_cano': batch['th1kh_cano_secc'], 'cond_src': batch['th1kh_ref_secc'], 'cond_tgt': batch['th1kh_pertube_secc0']} |
|
pertube_cond = {'cond_cano': batch['th1kh_cano_secc'], 'cond_src': batch['th1kh_ref_secc'], 'cond_tgt': batch['th1kh_pertube_secc1']} |
|
secc_plane = self.model.cal_secc_plane(cond) |
|
pertube_secc_plane = self.model.cal_secc_plane(pertube_cond) |
|
with torch.autograd.profiler.record_function('G_regularize_forward'): |
|
if hparams.get("secc_pertube_mode", 'randn') in ['randn', 'tv']: |
|
secc_reg_loss = torch.nn.functional.l1_loss(secc_plane, pertube_secc_plane) |
|
|
|
elif hparams.get("secc_pertube_mode", 'randn') == 'laplacian': |
|
pertube_cond2 = { 'cond_cano': batch['th1kh_cano_secc'], 'cond_src': batch['th1kh_ref_secc'], 'cond_tgt': batch['th1kh_pertube_secc2']} |
|
pertube_secc_plane2 = self.model.cal_secc_plane(pertube_cond2) |
|
interpolate_secc_plane = (pertube_secc_plane + pertube_secc_plane2) / 2 |
|
secc_reg_loss = torch.nn.functional.l1_loss(secc_plane, interpolate_secc_plane) |
|
else: raise NotImplementedError() |
|
losses['G_th1kh_regularize_pertube_secc_mae'] = secc_reg_loss |
|
|
|
|
|
blink_cond1 = {'cond_cano': batch['th1kh_cano_secc'], 'cond_src': batch['th1kh_ref_secc'], 'cond_tgt': batch['th1kh_blink_mv_secc1']} |
|
blink_cond2 = {'cond_cano': batch['th1kh_cano_secc'], 'cond_src': batch['th1kh_ref_secc'], 'cond_tgt': batch['th1kh_blink_mv_secc2']} |
|
blink_cond3 = {'cond_cano': batch['th1kh_cano_secc'], 'cond_src': batch['th1kh_ref_secc'], 'cond_tgt': batch['th1kh_blink_mv_secc3']} |
|
blink_secc_plane1 = self.model.cal_secc_plane(blink_cond1) |
|
blink_secc_plane2 = self.model.cal_secc_plane(blink_cond2) |
|
blink_secc_plane3 = self.model.cal_secc_plane(blink_cond3) |
|
interpolate_blink_secc_plane = (blink_secc_plane1 + blink_secc_plane3) / 2 |
|
blink_reg_loss = torch.nn.functional.l1_loss(blink_secc_plane2, interpolate_blink_secc_plane) |
|
losses['G_th1kh_regularize_blink_secc_mae'] = blink_reg_loss |
|
|
|
return losses |
|
|
|
def forward_D_main(self, batch): |
|
""" |
|
we update ema this substep. |
|
""" |
|
FFHQ_DISC_UPDATE_INTERVAL = 4 |
|
losses = {} |
|
with torch.autograd.profiler.record_function('D_minimize_fake_forward'): |
|
|
|
ref_cameras = batch['th1kh_ref_cameras'] |
|
ref_img_tmp_image = batch['th1kh_ref_head_imgs'].detach().requires_grad_(True) |
|
ref_img_tmp_image_raw = batch['th1kh_ref_head_imgs_raw'].detach().requires_grad_(True) |
|
th1kh_ref_img_tmp = {'image': ref_img_tmp_image, 'image_raw': ref_img_tmp_image_raw} |
|
th1kh_ref_logits = self.forward_D(th1kh_ref_img_tmp, ref_cameras) |
|
losses['D_th1kh_maximize_gt_ref'] = torch.nn.functional.softplus(-th1kh_ref_logits).mean() |
|
if hparams.get("add_ffhq_singe_disc", False) and (self.global_step+1) % FFHQ_DISC_UPDATE_INTERVAL == 0: |
|
ffhq_ref_img_tmp = {'image': batch['ffhq_head_imgs'].detach().requires_grad_(True),'image_raw': batch['ffhq_head_imgs_raw'].detach().requires_grad_(True)} |
|
ffhq_ref_logits = self.forward_ffhq_D(ffhq_ref_img_tmp, ref_cameras) |
|
losses['D_ffhq_maximize_gt_ref'] = torch.nn.functional.softplus(-ffhq_ref_logits).mean() |
|
|
|
|
|
if (self.global_step + 1) % hparams['reg_interval_d'] == 0 and self.training is True: |
|
with conv2d_gradfix.no_weight_gradients(): |
|
ref_r1_grads = torch.autograd.grad(outputs=[th1kh_ref_logits.sum()], inputs=[th1kh_ref_img_tmp['image'], th1kh_ref_img_tmp['image_raw']], create_graph=True, only_inputs=True) |
|
ref_r1_grads_image = ref_r1_grads[0] |
|
ref_r1_grads_image_raw = ref_r1_grads[1] |
|
ref_r1_penalty_raw = ref_r1_grads_image_raw.square().sum([1,2,3]).mean() |
|
ref_r1_penalty_image = ref_r1_grads_image.square().sum([1,2,3]).mean() |
|
losses['D_th1kh_gradient_penalty_gt_ref'] = (ref_r1_penalty_image + ref_r1_penalty_raw) / 2 |
|
if hparams.get("add_ffhq_singe_disc", False): |
|
with conv2d_gradfix.no_weight_gradients(): |
|
ref_r1_grads = torch.autograd.grad(outputs=[ffhq_ref_logits.sum()], inputs=[ffhq_ref_img_tmp['image'], ffhq_ref_img_tmp['image_raw']], create_graph=True, only_inputs=True) |
|
ref_r1_grads_image = ref_r1_grads[0] |
|
ref_r1_grads_image_raw = ref_r1_grads[1] |
|
ref_r1_penalty_raw = ref_r1_grads_image_raw.square().sum([1,2,3]).mean() |
|
ref_r1_penalty_image = ref_r1_grads_image.square().sum([1,2,3]).mean() |
|
losses['D_ffhq_gradient_penalty_gt_ref'] = (ref_r1_penalty_image + ref_r1_penalty_raw) / 2 |
|
|
|
|
|
if 'th1kh_recon_mv_imgs' in self.gen_tmp_output: |
|
camera = batch['th1kh_mv_cameras'] |
|
disc_inp_img = { |
|
'image': self.gen_tmp_output['th1kh_recon_mv_imgs'], |
|
'image_raw': self.gen_tmp_output['th1kh_recon_mv_imgs_raw'], |
|
} |
|
gen_logits = self.forward_D(disc_inp_img, camera, update_emas=True) |
|
losses['D_th1kh_minimize_model_pred_mv'] = torch.nn.functional.softplus(gen_logits).mean() |
|
if hparams.get("add_ffhq_singe_disc", False) and (self.global_step+1) % FFHQ_DISC_UPDATE_INTERVAL == 0: |
|
gen_logits = self.forward_ffhq_D(disc_inp_img, camera, update_emas=True) |
|
losses['D_ffhq_minimize_model_pred_mv'] = torch.nn.functional.softplus(gen_logits).mean() |
|
|
|
|
|
mv_cameras = batch['th1kh_mv_cameras'] |
|
mv_img_tmp_image = batch['th1kh_mv_head_imgs'].detach().requires_grad_(True) |
|
mv_img_tmp_image_raw = batch['th1kh_mv_head_imgs_raw'].detach().requires_grad_(True) |
|
th1kh_mv_img_tmp = {'image': mv_img_tmp_image, 'image_raw': mv_img_tmp_image_raw} |
|
th1kh_mv_logits = self.forward_D(th1kh_mv_img_tmp, mv_cameras) |
|
losses['D_th1kh_maximize_gt_mv'] = torch.nn.functional.softplus(-th1kh_mv_logits).mean() |
|
|
|
|
|
if (self.global_step + 1) % hparams['reg_interval_d'] == 0 and self.training is True: |
|
with conv2d_gradfix.no_weight_gradients(): |
|
mv_r1_grads = torch.autograd.grad(outputs=[th1kh_mv_logits.sum()], inputs=[th1kh_mv_img_tmp['image'], th1kh_mv_img_tmp['image_raw']], create_graph=True, only_inputs=True) |
|
mv_r1_grads_image = mv_r1_grads[0] |
|
mv_r1_grads_image_raw = mv_r1_grads[1] |
|
mv_r1_penalty_raw = mv_r1_grads_image_raw.square().sum([1,2,3]).mean() |
|
mv_r1_penalty_image = mv_r1_grads_image.square().sum([1,2,3]).mean() |
|
losses['D_th1kh_gradient_penalty_gt_mv'] = (mv_r1_penalty_image + mv_r1_penalty_raw) / 2 |
|
|
|
self.gen_tmp_output = {} |
|
return losses |
|
|
|
def _training_step(self, sample, batch_idx, optimizer_idx): |
|
if len(sample) == 0: |
|
return None |
|
if optimizer_idx == 0: |
|
sample = self.prepare_batch(sample) |
|
self.cache_sample = sample |
|
else: |
|
sample = self.cache_sample |
|
|
|
losses = {} |
|
if optimizer_idx == 0: |
|
|
|
if hparams['two_stage_training']: |
|
if self.global_step >= self.start_adv_iters: |
|
|
|
self.model.on_train_superresolution() |
|
if hparams.get('also_update_decoder'): |
|
self.model.decoder.requires_grad_(True) |
|
else: |
|
|
|
self.model.on_train_full_model() |
|
else: |
|
self.model.on_train_full_model() |
|
|
|
losses.update(self.run_G_th1kh_src2src_image(sample)) |
|
losses.update(self.run_G_th1kh_src2tgt_image(sample)) |
|
losses.update(self.run_G_reg(sample)) |
|
losses.update(self.run_G_reg_cond(sample)) |
|
loss_weights = { |
|
'G_th1kh_ref_img_mae': hparams.get("lambda_mse", 1.0), |
|
'G_th1kh_ref_img_mae_raw': hparams.get("lambda_mse", 1.0), |
|
'G_th1kh_ref_img_lpips': 0.1, |
|
'G_th1kh_ref_img_lpips_raw': 0.1, |
|
'G_th1kh_ref_adv': hparams['lambda_th1kh_mv_adv'] if self.global_step >= self.start_adv_iters else 0., |
|
'G_th1kh_ref_weights_l1_loss': hparams.get("lambda_weights_l1", 0.5), |
|
'G_th1kh_ref_weights_entropy_loss': hparams.get("lambda_weights_entropy", 0.05), |
|
|
|
'G_th1kh_mv_img_mae': hparams.get("lambda_mse", 1.0), |
|
'G_th1kh_mv_img_mae_raw': hparams.get("lambda_mse", 1.0), |
|
'G_th1kh_mv_img_lpips': 0.1, |
|
'G_th1kh_mv_img_lpips_raw': 0.1, |
|
'G_th1kh_mv_adv': hparams['lambda_th1kh_mv_adv'] if self.global_step >= self.start_adv_iters else 0., |
|
'G_th1kh_mv_weights_l1_loss': hparams.get("lambda_weights_l1", 0.3), |
|
'G_th1kh_mv_weights_entropy_loss': hparams.get("lambda_weights_entropy", 0.01), |
|
|
|
'G_th1kh_ref_img_lip_mae': 0.5, |
|
'G_th1kh_ref_img_lip_lpips': 0.05, |
|
'G_th1kh_mv_img_lip_mae': 0.5, |
|
'G_th1kh_mv_img_lip_lpips': 0.05, |
|
|
|
'G_th1kh_regularize_density_l1': hparams['lambda_density_reg'] * hparams['reg_interval_g'], |
|
'G_ffhq_adv_maxmimize_model_pred_mv': hparams['lambda_ffhq_mv_adv'] if self.global_step >= self.start_adv_iters else 0., |
|
'secc_deform_l1_losses': 0.1, |
|
} |
|
|
|
if 'G_th1kh_regularize_pertube_secc_mae' in losses: |
|
target_pertube_blink_secc_loss = hparams.get('target_pertube_blink_secc_loss', 0.15) |
|
target_pertube_secc_loss = hparams.get('target_pertube_secc_loss', 0.15) |
|
current_pertube_blink_secc_loss = losses['G_th1kh_regularize_blink_secc_mae'].item() |
|
current_pertube_secc_loss = losses['G_th1kh_regularize_pertube_secc_mae'].item() |
|
grad_lambda_pertube_blink_secc = (math.log10(current_pertube_blink_secc_loss+1e-15) - math.log10(target_pertube_blink_secc_loss+1e-15)) |
|
grad_lambda_pertube_secc = (math.log10(current_pertube_secc_loss+1e-15) - math.log10(target_pertube_secc_loss+1e-15)) |
|
lr_lambda_pertube_secc = hparams.get('lr_lambda_pertube_secc', 0.01) |
|
self.model.lambda_pertube_blink_secc.data = self.model.lambda_pertube_blink_secc.data + grad_lambda_pertube_blink_secc * lr_lambda_pertube_secc |
|
self.model.lambda_pertube_blink_secc.data.clamp_(0, 2.) |
|
self.model.lambda_pertube_secc.data = self.model.lambda_pertube_secc.data + grad_lambda_pertube_secc * lr_lambda_pertube_secc |
|
self.model.lambda_pertube_secc.data.clamp_(0, 0.2) |
|
|
|
if hparams['target_pertube_secc_loss'] == 0.: |
|
self.model.lambda_pertube_secc.data = self.model.lambda_pertube_secc.data * 0. |
|
if hparams['target_pertube_blink_secc_loss'] == 0.: |
|
self.model.lambda_pertube_blink_secc.data = self.model.lambda_pertube_blink_secc.data * 0. |
|
|
|
losses['lambda_pertube_blink_secc'] = self.model.lambda_pertube_blink_secc.item() |
|
losses['lambda_pertube_secc'] = self.model.lambda_pertube_secc.item() |
|
loss_weights['G_th1kh_regularize_pertube_secc_mae'] = self.model.lambda_pertube_secc.item() * hparams['reg_interval_g_cond'] |
|
loss_weights['G_th1kh_regularize_blink_secc_mae'] = self.model.lambda_pertube_blink_secc.item() * hparams['reg_interval_g_cond'] |
|
|
|
if hparams.get("disable_highreso_at_stage1", False) and hparams['two_stage_training'] and self.global_step >= self.start_adv_iters: |
|
loss_weights['G_th1kh_mv_img_mae'] = 0. |
|
loss_weights['G_th1kh_mv_img_lpips'] = 0. |
|
|
|
elif optimizer_idx == 1: |
|
|
|
if self.global_step < hparams["start_adv_iters"] - 10000: |
|
|
|
return None |
|
losses.update(self.forward_D_main(sample)) |
|
loss_weights = { |
|
'D_th1kh_maximize_gt_ref': 1.0, |
|
'D_ffhq_maximize_gt_ref': 1.0, |
|
'D_th1kh_maximize_gt_mv': 1.0, |
|
'D_th1kh_minimize_model_pred_mv': 1.0, |
|
'D_ffhq_minimize_model_pred_mv': 1.0, |
|
|
|
'D_th1kh_gradient_penalty_gt_ref': hparams['lambda_gradient_penalty'] * hparams['reg_interval_d'], |
|
'D_th1kh_gradient_penalty_gt_mv': hparams['lambda_gradient_penalty'] * hparams['reg_interval_d'], |
|
'D_ffhq_gradient_penalty_gt_ref': hparams['lambda_gradient_penalty'] * hparams['reg_interval_d'], |
|
} |
|
self.gen_tmp_output = {} |
|
else: |
|
return None |
|
total_loss = sum([loss_weights[k] * v for k, v in losses.items() if isinstance(v, torch.Tensor) and v.requires_grad]) |
|
|
|
if len(losses) == 0: |
|
return None |
|
return total_loss, losses |
|
|
|
|
|
|
|
|
|
def validation_start(self): |
|
self.gen_dir = os.path.join(hparams['work_dir'], f'validation_results') |
|
os.makedirs(self.gen_dir, exist_ok=True) |
|
|
|
@torch.no_grad() |
|
def validation_step(self, sample, batch_idx): |
|
self.gen_dir = os.path.join(hparams['work_dir'], f'validation_results') |
|
os.makedirs(self.gen_dir, exist_ok=True) |
|
|
|
outputs = {} |
|
losses = {} |
|
if len(sample) == 0: |
|
return None |
|
sample = self.prepare_batch(sample) |
|
rank = 0 if len(set(os.environ['CUDA_VISIBLE_DEVICES'].split(","))) == 1 else dist.get_rank() |
|
|
|
losses.update(self.run_G_th1kh_src2tgt_image(sample)) |
|
losses.update(self.run_G_reg(sample)) |
|
losses.update(self.run_G_reg_cond(sample)) |
|
losses.update(self.forward_D_main(sample)) |
|
outputs['losses'] = losses |
|
outputs['total_loss'] = sum(outputs['losses'].values()) |
|
outputs = tensors_to_scalars(outputs) |
|
|
|
if self.global_step % hparams['valid_infer_interval'] == 0 \ |
|
and batch_idx < hparams['num_valid_plots'] and rank == 0: |
|
|
|
imgs_ref = sample['th1kh_ref_head_imgs'] |
|
gen_img = self.model.forward(imgs_ref, sample['th1kh_mv_cameras'], |
|
cond={'cond_cano': sample['th1kh_cano_secc'], |
|
'cond_src': sample['th1kh_ref_secc'], |
|
'cond_tgt': sample['th1kh_mv_secc'], |
|
'ref_head_img': imgs_ref, |
|
'ref_cameras': sample['th1kh_ref_cameras'], |
|
'ref_alphas': sample['th1kh_ref_head_masks'].float(), |
|
}, noise_mode='const') |
|
gen_img_recon = self.model.forward(imgs_ref, sample['th1kh_ref_cameras'], |
|
cond={'cond_cano': sample['th1kh_cano_secc'], |
|
'cond_src': sample['th1kh_ref_secc'], |
|
'cond_tgt': sample['th1kh_ref_secc'], |
|
'ref_head_img': imgs_ref, |
|
'ref_cameras': sample['th1kh_ref_cameras'], |
|
'ref_alphas': sample['th1kh_ref_head_masks'].float(), |
|
}, noise_mode='const') |
|
|
|
imgs_recon = gen_img_recon['image'].permute(0, 2,3,1) |
|
imgs_recon_raw = filtered_resizing(gen_img_recon['image_raw'], size=512, f=self.resample_filter, filter_mode='antialiased').permute(0, 2,3,1) |
|
imgs_recon_depth = gen_img_recon['image_depth'].permute(0, 2,3,1) |
|
imgs_pred_raw = filtered_resizing(gen_img['image_raw'], size=512, f=self.resample_filter, filter_mode='antialiased').permute(0, 2,3,1) |
|
imgs_pred = gen_img['image'].permute(0, 2,3,1) |
|
imgs_pred_depth = gen_img['image_depth'].permute(0, 2,3,1) |
|
imgs_ref = imgs_ref.permute(0,2,3,1) |
|
imgs_mv = sample['th1kh_mv_head_imgs'].permute(0,2,3,1) |
|
|
|
for i in range(len(imgs_pred)): |
|
idx_string = format(i+batch_idx * hparams['batch_size'], "05d") |
|
base_fn = f"{idx_string}" |
|
img_ref_mv_recon_pred = torch.cat([imgs_ref[i], imgs_mv[i], imgs_recon_raw[i], imgs_pred_raw[i], imgs_recon[i], imgs_pred[i]], dim=1) |
|
ref_secc = filtered_resizing(sample['th1kh_ref_secc'][i].unsqueeze(0), size=512, f=self.resample_filter, filter_mode='antialiased')[0].permute(1,2,0) |
|
mv_secc = filtered_resizing(sample['th1kh_mv_secc'][i].unsqueeze(0), size=512, f=self.resample_filter, filter_mode='antialiased')[0].permute(1,2,0) |
|
img_ref_mv_recon_pred = torch.cat([img_ref_mv_recon_pred, ref_secc], dim=1) |
|
img_ref_mv_recon_pred = torch.cat([img_ref_mv_recon_pred, mv_secc], dim=1) |
|
self.save_rgb_to_fname(img_ref_mv_recon_pred, f"{self.gen_dir}/th1kh_images_rgb_iter{self.global_step}/ref_mv_reconraw_predraw_recon_pred_{base_fn}.png") |
|
img_depth_recon_pred = torch.cat([imgs_recon_depth[i], imgs_pred_depth[i]], dim=1) |
|
self.save_depth_to_fname(img_depth_recon_pred, f"{self.gen_dir}/th1kh_images_depth_iter{self.global_step}/recon_pred_{base_fn}.png") |
|
|
|
if batch_idx == 0 and (not torch.distributed.is_initialized() or torch.distributed.get_rank() == 0): |
|
image_name = "data/raw/examples/Macron.png" |
|
imgs_ref = cv2.imread(image_name) |
|
img = load_img_to_512_hwc_array(image_name) |
|
segmap = self.seg_model._cal_seg_map(img) |
|
head_img = self.seg_model._seg_out_img_with_segmap(img, segmap, mode='head')[0] |
|
head_mask = segmap[[1,3,5] , :, :].sum(axis=0)[None,:] > 0.5 |
|
head_mask = torch.tensor(head_mask).float().reshape([1,1,512,512]).cuda() |
|
imgs_ref = ((torch.tensor(head_img) - 127.5)/127.5).float().unsqueeze(0).permute(0, 3, 1,2).cuda() |
|
|
|
from data_gen.utils.process_image.fit_3dmm_landmark import fit_3dmm_for_a_image |
|
coeff_dict = fit_3dmm_for_a_image(image_name, save=False) |
|
id = torch.tensor(coeff_dict['id']).float().cuda().reshape([1, 80]) |
|
exp = torch.tensor(coeff_dict['exp']).float().cuda().reshape([1, 64]) |
|
with torch.no_grad(): |
|
_, cano_secc = self.secc_renderer(id,exp*0,sample['th1kh_ref_eulers']*0,sample['th1kh_ref_trans']*0) |
|
_, ref_secc = self.secc_renderer(id,exp,sample['th1kh_ref_eulers']*0,sample['th1kh_ref_trans']*0) |
|
|
|
gen_img = self.model.forward(imgs_ref, sample['th1kh_mv_cameras'][0:1], |
|
cond={'cond_cano': cano_secc, |
|
'cond_src': ref_secc, |
|
'cond_tgt': ref_secc, |
|
'ref_head_img': imgs_ref, |
|
'ref_cameras': sample['th1kh_mv_cameras'][0:1], |
|
'ref_alphas': head_mask}, |
|
noise_mode='const') |
|
img = gen_img['image'].permute(0, 2,3,1)[0] |
|
self.save_rgb_to_fname(img, f"{self.gen_dir}/ood_images_rgb_iter{self.global_step}/May.png") |
|
|
|
return outputs |
|
|
|
def masked_error_loss(self, img_pred, img_gt, mask, unmasked_weight=0.1, mode='l1'): |
|
|
|
|
|
masked_weight = 1.0 |
|
weight_mask = mask.float() * masked_weight + (~mask).float() * unmasked_weight |
|
if mode == 'l1': |
|
error = (img_pred - img_gt).abs().sum(dim=1, keepdim=True) * weight_mask |
|
else: |
|
error = (img_pred - img_gt).pow(2).sum(dim=1, keepdim=True) * weight_mask |
|
error.clamp_(0, max(0.5, error.quantile(0.8).item())) |
|
loss = error.mean() |
|
return loss |
|
|
|
def set_unmasked_to_black(self, img, mask): |
|
out_img = img * mask.float() - (~mask).float() |
|
return out_img |
|
|
|
def dilate(self, bin_img, ksize=5, mode='max_pool'): |
|
""" |
|
mode: max_pool or avg_pool |
|
""" |
|
|
|
pad = (ksize-1)//2 |
|
bin_img = F.pad(bin_img, pad=[pad,pad,pad,pad], mode='reflect') |
|
if mode == 'max_pool': |
|
out = F.max_pool2d(bin_img, kernel_size=ksize, stride=1, padding=0) |
|
else: |
|
out = F.avg_pool2d(bin_img, kernel_size=ksize, stride=1, padding=0) |
|
return out |
|
|
|
def dilate_mask(self, mask, ksize=21): |
|
mask = self.dilate(mask, ksize=ksize, mode='max_pool') |
|
return mask |
|
|
|
def validation_end(self, outputs): |
|
return super().validation_end(outputs) |
|
|