File size: 49,961 Bytes
e34aada |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 |
import numpy as np
import torch
import torch.nn.functional as F
import torch.distributed as dist
import os
import random
import copy
import cv2
import math
import lpips
from utils.commons.hparams import hparams
from utils.commons.tensor_utils import tensors_to_scalars, convert_to_np, move_to_cuda
from utils.nn.model_utils import not_requires_grad, num_params
from utils.commons.dataset_utils import data_loader
from utils.nn.schedulers import NoneSchedule
from utils.commons.ckpt_utils import load_ckpt, get_last_checkpoint, restore_weights, restore_opt_state
from tasks.os_avatar.loss_utils.vgg19_loss import VGG19Loss
from tasks.os_avatar.dataset_utils.motion2video_dataset import Motion2Video_Dataset
from tasks.os_avatar.img2plane_task import OSAvatarImg2PlaneTask
from modules.eg3ds.models.triplane import TriPlaneGenerator
from modules.eg3ds.models.dual_discriminator import DualDiscriminator, SingleDiscriminator
from modules.eg3ds.torch_utils.ops import conv2d_gradfix
from modules.eg3ds.torch_utils.ops import upfirdn2d
from modules.eg3ds.models.dual_discriminator import filtered_resizing
from modules.real3d.secc_img2plane import OSAvatarSECC_Img2plane
from deep_3drecon.secc_renderer import SECC_Renderer
from data_util.face3d_helper import Face3DHelper
from data_gen.utils.mp_feature_extractors.mp_segmenter import MediapipeSegmenter
from data_gen.runs.binarizer_nerf import get_lip_rect
from inference.infer_utils import mirror_index, load_img_to_512_hwc_array, load_img_to_normalized_512_bchw_tensor
from inference.edit_secc import blink_eye_for_secc
class ScheduleForLM3DImg2PlaneEG3D(NoneSchedule):
def __init__(self, optimizer, lr, lr_d, warmup_updates=0):
self.optimizer = optimizer
self.constant_lr = self.lr = lr
self.lr_d = lr_d
self.warmup_updates = warmup_updates
self.step(0)
def step(self, num_updates):
constant_lr = self.constant_lr
if self.warmup_updates > 0 and num_updates <= self.warmup_updates:
warmup = min(num_updates / self.warmup_updates, 1.0)
self.lr = max(constant_lr * warmup, 1e-7)
else:
self.lr = constant_lr
for optim_i in range(len(self.optimizer)-1):
lr_mul_cano_img2plane = hparams['lr_mul_cano_img2plane'] * min(1.0, num_updates / (hparams['start_adv_iters']+20000))
self.optimizer[optim_i].param_groups[0]['lr'] = lr_mul_cano_img2plane * self.lr * (hparams.get("lr_decay_rate", 0.95)) ** (num_updates // hparams.get("lr_decay_interval", 5_000)) if num_updates > 6_000 else 0 # cano_img2plane
self.optimizer[optim_i].param_groups[0]['lr'] = max(5e-6, self.optimizer[optim_i].param_groups[0]['lr'])
if num_updates >= hparams['stop_update_i2p_iters']:
self.optimizer[optim_i].param_groups[0]['lr'] = 0.
self.optimizer[optim_i].param_groups[1]['lr'] = max(5e-6, self.lr * (hparams.get("lr_decay_rate", 0.95)) ** (num_updates // hparams.get("lr_decay_interval", 5_000))) if num_updates > 0 else 0 # secc_img2plane
self.optimizer[optim_i].param_groups[2]['lr'] = max(5e-6, self.lr * (hparams.get("lr_decay_rate", 0.95)) ** (num_updates // hparams.get("lr_decay_interval", 5_000))) if num_updates > 6_000 else 0 # decoder
self.optimizer[optim_i].param_groups[3]['lr'] = max(5e-6, self.lr * (hparams.get("lr_decay_rate", 0.95)) ** (num_updates // hparams.get("lr_decay_interval", 5_000))) if num_updates > 30_000 else 0 # sr
self.optimizer[-1].param_groups[0]['lr'] = max(5e-6, self.lr_d * (hparams.get("lr_decay_rate", 0.95)) ** (num_updates // hparams.get("lr_decay_interval", 5_000))) # for disc
return self.lr
class SECC_Img2PlaneEG3DTask(OSAvatarImg2PlaneTask):
def __init__(self):
super().__init__()
self.seg_model = MediapipeSegmenter()
self.dataset_cls = Motion2Video_Dataset
self.face3d_helper = Face3DHelper(use_gpu=True, keypoint_mode='lm68')
def build_model(self):
self.eg3d_model = TriPlaneGenerator()
load_ckpt(self.eg3d_model, hparams['pretrained_eg3d_ckpt'], strict=True)
self.model = OSAvatarSECC_Img2plane()
self.disc = DualDiscriminator()
self.cano_img2plane_params = [p for k, p in self.model.cano_img2plane_backbone.named_parameters() if p.requires_grad]
self.secc_img2plane_params = [p for k, p in self.model.secc_img2plane_backbone.named_parameters() if p.requires_grad]
self.decoder_params = [p for p in self.model.decoder.parameters() if p.requires_grad]
self.upsample_params = [p for p in self.model.superresolution.parameters() if p.requires_grad]
self.disc_params = [p for k, p in self.disc.named_parameters() if p.requires_grad]
if hparams.get("add_ffhq_singe_disc", False):
self.ffhq_disc = DualDiscriminator()
self.disc_params += [p for k, p in self.ffhq_disc.named_parameters() if p.requires_grad]
eg3d_dir = 'checkpoints/geneface2_ckpts/eg3d_baseline_run2'
load_ckpt(self.ffhq_disc, eg3d_dir, model_name='disc', strict=True)
self.secc_renderer = SECC_Renderer(512)
if hparams.get('init_from_ckpt', '') != '':
ckpt_dir = hparams['init_from_ckpt']
try:
load_ckpt(self.model.cano_img2plane_backbone, ckpt_dir, model_name='model.cano_img2plane_backbone', strict=True)
load_ckpt(self.model.secc_img2plane_backbone, ckpt_dir, model_name='model.secc_img2plane_backbone', strict=True)
except:
# from a img2plane ckpt
load_ckpt(self.model.cano_img2plane_backbone, ckpt_dir, model_name='model.img2plane_backbone', strict=False)
# load_ckpt(self.model.cano_img2plane_backbone, ckpt_dir, model_name='model.img2plane_backbone', strict=True)
load_ckpt(self.model.decoder, ckpt_dir, model_name='model.decoder', strict=True)
load_ckpt(self.model.superresolution, ckpt_dir, model_name='model.superresolution', strict=False) # false for spade sr
load_ckpt(self.disc, ckpt_dir, model_name='disc', strict=True)
return self.model
def build_optimizer(self, model):
self.optimizer_gen = optimizer_gen = torch.optim.Adam(
self.cano_img2plane_params,
lr=hparams['lr_g'], # we use a 0.5x smaller lr for transformer
betas=(hparams['optimizer_adam_beta1_g'], hparams['optimizer_adam_beta2_g'])
)
self.optimizer_gen.add_param_group({
'params': self.secc_img2plane_params,
'lr': hparams['lr_g'],
'betas': (hparams['optimizer_adam_beta1_g'], hparams['optimizer_adam_beta2_g'])
})
self.optimizer_gen.add_param_group({
'params': self.decoder_params,
'lr': hparams['lr_g'],
'betas': (hparams['optimizer_adam_beta1_g'], hparams['optimizer_adam_beta2_g'])
})
self.optimizer_gen.add_param_group({
'params': self.upsample_params,
'lr': hparams['lr_g'],
'betas': (hparams['optimizer_adam_beta1_g'], hparams['optimizer_adam_beta2_g'])
})
mb_ratio_d = hparams['reg_interval_d'] / (hparams['reg_interval_d'] + 1)
self.optimizer_disc = optimizer_disc = torch.optim.Adam(
self.disc_params,
lr=hparams['lr_d'] * mb_ratio_d,
betas=(hparams['optimizer_adam_beta1_d'] ** mb_ratio_d, hparams['optimizer_adam_beta2_d'] ** mb_ratio_d))
optimizers = [optimizer_gen, optimizer_disc]
return optimizers
def build_scheduler(self, optimizer):
mb_ratio_d = hparams['reg_interval_d'] / (hparams['reg_interval_d'] + 1)
return ScheduleForLM3DImg2PlaneEG3D(optimizer, hparams['lr_g'], hparams['lr_d'] * mb_ratio_d, hparams['warmup_updates'])
def forward_G(self, img, camera, cond=None, ret=None, update_emas=False, cache_backbone=True, use_cached_backbone=False):
"""
ref_img: [B, 3, W, H]
camera: [b, 25], 16 dim c2w, and 9 dim intrinsic
cond: a dict of cano_secc, tgt_secc, src_secc
"""
G = self.model
gen_output = G.forward(img=img, camera=camera, cond=cond, ret=ret, update_emas=update_emas, cache_backbone=cache_backbone, use_cached_backbone=use_cached_backbone)
return gen_output
def forward_D(self, img, camera, update_emas=False):
D = self.disc
logits = D.forward(img, camera, update_emas=update_emas)
return logits
def forward_ffhq_D(self, img, camera, update_emas=False):
D = self.ffhq_disc
logits = D.forward(img, 0*camera, update_emas=update_emas)
return logits
def prepare_batch(self, batch):
out_batch = {}
out_batch['th1kh_ref_cameras'] = batch['th1kh_ref_cameras']
out_batch['th1kh_ref_head_imgs'] = batch['th1kh_ref_head_imgs']
out_batch['th1kh_ref_head_imgs_raw'] = filtered_resizing(batch['th1kh_ref_head_imgs'], size=hparams['neural_rendering_resolution'], f=self.resample_filter, filter_mode='antialiased')
out_batch['th1kh_mv_cameras'] = batch['th1kh_mv_cameras']
out_batch['th1kh_mv_head_imgs'] = batch['th1kh_mv_head_imgs']
out_batch['th1kh_mv_head_imgs_raw'] = filtered_resizing(batch['th1kh_mv_head_imgs'], size=hparams['neural_rendering_resolution'], f=self.resample_filter, filter_mode='antialiased')
out_batch['th1kh_ref_eulers'] = batch['th1kh_ref_eulers']
out_batch['th1kh_ref_trans'] = batch['th1kh_ref_trans']
with torch.no_grad():
_, out_batch['th1kh_cano_secc'] = self.secc_renderer(batch['th1kh_ref_ids'],batch['th1kh_ref_exps']*0,batch['th1kh_ref_eulers']*0,batch['th1kh_ref_trans']*0)
_, out_batch['th1kh_ref_secc'] = self.secc_renderer(batch['th1kh_ref_ids'],batch['th1kh_ref_exps'],batch['th1kh_ref_eulers']*0,batch['th1kh_ref_trans']*0)
_, out_batch['th1kh_mv_secc'] = self.secc_renderer(batch['th1kh_mv_ids'],batch['th1kh_mv_exps'],batch['th1kh_mv_eulers']*0,batch['th1kh_mv_trans']*0)
if (self.global_step+1) % hparams['reg_interval_g_cond'] == 0:
if random.random() < hparams.get("pertube_ref_prob", 0.25): # 1/4的可能对ref secc做pertube
out_batch['th1kh_pertube_secc0'] = out_batch['th1kh_ref_secc'].clone()
if hparams.get("secc_pertube_mode", 'randn') == 'randn':
_, out_batch['th1kh_pertube_secc1'] = self.secc_renderer(batch['th1kh_ref_ids'] + torch.randn_like(batch['th1kh_ref_ids'])*hparams['secc_pertube_randn_scale'],batch['th1kh_ref_exps'] + torch.randn_like(batch['th1kh_ref_exps'])*hparams['secc_pertube_randn_scale'] ,batch['th1kh_ref_eulers']*0,batch['th1kh_ref_trans']*0)
elif hparams.get("secc_pertube_mode", 'randn') in ['tv', 'laplacian']:
_, out_batch['th1kh_pertube_secc1'] = self.secc_renderer(batch['th1kh_ref_ids'],batch['th1kh_ref_pertube_exps_1'],batch['th1kh_ref_eulers']*0,batch['th1kh_ref_trans']*0)
_, out_batch['th1kh_pertube_secc2'] = self.secc_renderer(batch['th1kh_ref_ids'],batch['th1kh_ref_pertube_exps_2'],batch['th1kh_ref_eulers']*0,batch['th1kh_ref_trans']*0)
else:
raise NotImplementedError()
else:
out_batch['th1kh_pertube_secc0'] = out_batch['th1kh_mv_secc']
if hparams.get("secc_pertube_mode", 'randn') == 'randn':
_, out_batch['th1kh_pertube_secc1'] = self.secc_renderer(batch['th1kh_mv_ids'] + torch.randn_like(batch['th1kh_mv_ids'])*hparams['secc_pertube_randn_scale'],batch['th1kh_mv_exps'] + torch.randn_like(batch['th1kh_mv_exps'])*hparams['secc_pertube_randn_scale'] ,batch['th1kh_mv_eulers']*0,batch['th1kh_mv_trans']*0)
elif hparams.get("secc_pertube_mode", 'randn') in ['tv', 'laplacian']:
_, out_batch['th1kh_pertube_secc1'] = self.secc_renderer(batch['th1kh_mv_ids'],batch['th1kh_mv_pertube_exps_1'],batch['th1kh_mv_eulers']*0,batch['th1kh_mv_trans']*0)
_, out_batch['th1kh_pertube_secc2'] = self.secc_renderer(batch['th1kh_mv_ids'],batch['th1kh_mv_pertube_exps_2'],batch['th1kh_mv_eulers']*0,batch['th1kh_mv_trans']*0)
else:
raise NotImplementedError()
if (self.global_step+1) % hparams['reg_interval_g_cond'] == 0:
blink_secc_lst1 = []
blink_secc_lst2 = []
blink_secc_lst3 = []
for i in range(len(out_batch['th1kh_mv_secc'])):
if random.random() < 0.25: # 1/4的可能对ref secc做pertube
secc = out_batch['th1kh_ref_secc'][i]
else:
secc = out_batch['th1kh_mv_secc'][i]
blink_percent1 = random.random() * 0.5 # 0~0.5
blink_percent3 = 0.5 + random.random() * 0.5 # 0.5~1.0
blink_percent2 = (blink_percent1 + blink_percent3)/2
try:
out_secc1 = blink_eye_for_secc(secc, blink_percent1).to(secc.device)
out_secc2 = blink_eye_for_secc(secc, blink_percent2).to(secc.device)
out_secc3 = blink_eye_for_secc(secc, blink_percent3).to(secc.device)
except:
print("blink eye for secc failed, use original secc")
out_secc1 = copy.deepcopy(secc)
out_secc2 = copy.deepcopy(secc)
out_secc3 = copy.deepcopy(secc)
blink_secc_lst1.append(out_secc1)
blink_secc_lst2.append(out_secc2)
blink_secc_lst3.append(out_secc3)
out_batch['th1kh_blink_mv_secc1'] = torch.stack(blink_secc_lst1)
out_batch['th1kh_blink_mv_secc2'] = torch.stack(blink_secc_lst2)
out_batch['th1kh_blink_mv_secc3'] = torch.stack(blink_secc_lst3)
out_batch['th1kh_ref_head_masks'] = batch['th1kh_ref_head_masks'].unsqueeze(1).bool()
out_batch['th1kh_ref_head_masks_raw'] = torch.nn.functional.interpolate(out_batch['th1kh_ref_head_masks'].float(), size=(128,128), mode='nearest').bool()
out_batch['th1kh_ref_head_masks_dilate'] = self.dilate_mask(out_batch['th1kh_ref_head_masks'].float(), ksize=41).bool()
out_batch['th1kh_ref_head_masks_raw_dilate'] = torch.nn.functional.interpolate(out_batch['th1kh_ref_head_masks_dilate'].float(), size=(128,128), mode='nearest').bool()
out_batch['th1kh_mv_head_masks'] = batch['th1kh_mv_head_masks'].unsqueeze(1).bool()
out_batch['th1kh_mv_head_masks_raw'] = torch.nn.functional.interpolate(out_batch['th1kh_mv_head_masks'].float(), size=(128,128), mode='nearest').bool()
out_batch['th1kh_mv_head_masks_dilate'] = self.dilate_mask(out_batch['th1kh_mv_head_masks'].float(), ksize=41).long()
out_batch['th1kh_mv_head_masks_raw_dilate'] = torch.nn.functional.interpolate(out_batch['th1kh_mv_head_masks_dilate'].float(), size=(128,128), mode='nearest').bool()
WH = 512 # now we only support 512x512
ref_lm2ds = WH * self.face3d_helper.reconstruct_lm2d(batch['th1kh_ref_ids'],batch['th1kh_ref_exps'],batch['th1kh_ref_eulers'],batch['th1kh_ref_trans']).cpu().numpy()
mv_lm2ds = WH * self.face3d_helper.reconstruct_lm2d(batch['th1kh_mv_ids'],batch['th1kh_mv_exps'],batch['th1kh_mv_eulers'],batch['th1kh_mv_trans']).cpu().numpy()
ref_lip_rects = [get_lip_rect(ref_lm2ds[i], WH, WH) for i in range(len(ref_lm2ds))]
mv_lip_rects = [get_lip_rect(mv_lm2ds[i], WH, WH) for i in range(len(mv_lm2ds))]
out_batch['th1kh_ref_lip_rects'] = ref_lip_rects
out_batch['th1kh_mv_lip_rects'] = mv_lip_rects
return out_batch
def run_G_th1kh_src2src_image(self, batch):
"""
不在src2src上训练会导致画质变差、不像说话人, 这很合理, 因为i2p也是这样需要update on ref_mse
尤其是在靠近src的画质变好, 但同时会导致depth和color在靠近src的时候闪烁.
解决方法: 算secc2plane pertube loss的时候, 更频繁地在src secc附近计算loss; target到更小的pertube loss
"""
losses = {}
ret = {}
ret['losses'] = {}
if self.global_step % hparams['update_src2src_interval'] != 0:
return losses
with torch.autograd.profiler.record_function('G_th1kh_ref_forward'):
camera = batch['th1kh_ref_cameras']
img = batch['th1kh_ref_head_imgs']
img_raw = batch['th1kh_ref_head_imgs_raw']
gen_img = self.forward_G(batch['th1kh_ref_head_imgs'], camera,
cond={'cond_cano': batch['th1kh_cano_secc'],
'cond_src': batch['th1kh_ref_secc'],
'cond_tgt': batch['th1kh_ref_secc'],
'ref_head_img': batch['th1kh_ref_head_imgs'], # used for spade sr
'ref_alphas': batch['th1kh_ref_head_masks'].float(),
'ref_cameras': batch['th1kh_ref_cameras'],
},
ret=ret)
losses.update(ret['losses'])
if hparams.get("masked_error", True):
# 之所以用L1不用MSE, 原因是mse对mismatch的pixel loss过大, 而导致面部细节被忽略, 此外还有过模糊的问题
# 对mse raw图像, 因为deform的原因背景没法全黑, 导致这部分mse过高, 我们将其mask掉, 只计算人脸部分
# 在算lpips的时候, 尝试过把非头部mask掉再输入到VGG里面, 但是似乎有点问题, 所以最终没有mask掉非脸
losses['G_th1kh_ref_img_mae_raw'] = self.masked_error_loss(gen_img['image_raw'], img_raw, batch['th1kh_ref_head_masks_raw_dilate'], mode='l1', unmasked_weight=0.2)
losses['G_th1kh_ref_img_mae'] = self.masked_error_loss(gen_img['image'], img, batch['th1kh_ref_head_masks_dilate'], mode='l1', unmasked_weight=0.2)
pred_img_for_vgg = gen_img['image']
pred_img_raw_for_vgg = gen_img['image_raw']
losses['G_th1kh_ref_img_lpips'] = self.criterion_lpips(pred_img_for_vgg, img).mean()
losses['G_th1kh_ref_img_lpips_raw'] = self.criterion_lpips(pred_img_raw_for_vgg, img_raw).mean()
disc_inp_img = {
'image': pred_img_for_vgg,
'image_raw': pred_img_raw_for_vgg,
}
# lip loss
batch_size = len(gen_img['image'])
lip_mse_loss = 0
lip_lpips_loss = 0
for i in range(batch_size):
xmin, xmax, ymin, ymax = batch['th1kh_ref_lip_rects'][i]
lip_tgt_imgs = img[i:i+1,:, ymin:ymax,xmin:xmax].contiguous()
lip_pred_imgs = pred_img_for_vgg[i:i+1,:, ymin:ymax,xmin:xmax].contiguous()
lip_mse_loss = lip_mse_loss + 1/batch_size * (lip_pred_imgs - lip_tgt_imgs).abs().mean()
try:
lip_lpips_loss = lip_lpips_loss + 1/batch_size * self.criterion_lpips(lip_pred_imgs, lip_tgt_imgs).mean()
except: pass
losses['G_th1kh_ref_img_lip_mae'] = lip_mse_loss
losses['G_th1kh_ref_img_lip_lpips'] = lip_lpips_loss
else:
losses['G_th1kh_ref_img_mae_raw'] = (gen_img['image_raw'] - img_raw).abs().mean()
losses['G_th1kh_ref_img_mae'] = (gen_img['image'] - img).abs().mean()
losses['G_th1kh_ref_img_lpips'] = self.criterion_lpips(gen_img['image'], img).mean()
losses['G_th1kh_ref_img_lpips_raw'] = self.criterion_lpips(gen_img['image_raw'], img_raw).mean()
disc_inp_img = {
'image': gen_img['image'],
'image_raw': gen_img['image_raw'],
}
# ablate后发现, 去掉对ref的weights reg loss, 会导致学到的density比较散, 略微降低画质
alphas = gen_img['weights_img'].clamp(1e-5, 1 - 1e-5)
losses['G_th1kh_ref_weights_entropy_loss'] = torch.mean(- alphas * torch.log2(alphas) - (1 - alphas) * torch.log2(1 - alphas))
face_mask = batch['th1kh_ref_head_masks_raw'].bool()
nonface_mask = ~ batch['th1kh_ref_head_masks_raw'].bool()
losses['G_th1kh_ref_weights_l1_loss'] = (alphas[nonface_mask]-0).pow(2).mean() + (alphas[face_mask]-1).pow(2).mean()
gen_logits = self.forward_D(disc_inp_img, camera)
losses['G_th1kh_ref_adv'] = torch.nn.functional.softplus(-gen_logits).mean()
return losses
def run_G_th1kh_src2tgt_image(self, batch):
losses = {}
ret = {}
ret['losses'] = {}
with torch.autograd.profiler.record_function('G_th1kh_mv_forward'):
camera = batch['th1kh_mv_cameras']
img = batch['th1kh_mv_head_imgs']
img_raw = batch['th1kh_mv_head_imgs_raw']
gen_img = self.forward_G(batch['th1kh_ref_head_imgs'], camera,
cond={'cond_cano': batch['th1kh_cano_secc'],
'cond_src': batch['th1kh_ref_secc'],
'cond_tgt': batch['th1kh_mv_secc'],
'ref_head_img': batch['th1kh_ref_head_imgs'],
'ref_alphas': batch['th1kh_ref_head_masks'].float(),
'ref_cameras': batch['th1kh_ref_cameras'],
},
ret=ret)
losses.update(ret['losses'])
self.gen_tmp_output['th1kh_recon_mv_imgs'] = gen_img['image'].detach()
self.gen_tmp_output['th1kh_recon_mv_imgs_raw'] = gen_img['image_raw'].detach()
losses['G_ref_plane_l1_mean'] = (gen_img['plane'][:,:]).detach().abs().mean()
losses['G_ref_plane_l1_std'] = (gen_img['plane'][:,:]).detach().abs().std()
if hparams.get("masked_error", True):
# 之所以用L1不用MSE, 原因是mse对mismatch的pixel loss过大, 而导致面部细节被忽略, 此外还有过模糊的问题
# 对raw图像, 因为deform的原因背景没法全黑, 导致这部分mse过高, 我们将其mask掉, 只计算人脸部分
losses['G_th1kh_mv_img_mae_raw'] = self.masked_error_loss(gen_img['image_raw'], img_raw, batch['th1kh_mv_head_masks_raw_dilate'], mode='l1', unmasked_weight=0.2)
losses['G_th1kh_mv_img_mae'] = self.masked_error_loss(gen_img['image'], img, batch['th1kh_mv_head_masks_dilate'], mode='l1', unmasked_weight=0.2)
pred_img_for_vgg = gen_img['image']
pred_img_raw_for_vgg = gen_img['image_raw']
losses['G_th1kh_mv_img_lpips'] = self.criterion_lpips(pred_img_for_vgg, img).mean()
losses['G_th1kh_mv_img_lpips_raw'] = self.criterion_lpips(pred_img_raw_for_vgg, img_raw).mean()
# emphasize lip loss
batch_size = len(gen_img['image'])
lip_mse_loss = 0
lip_lpips_loss = 0
for i in range(batch_size):
xmin, xmax, ymin, ymax = batch['th1kh_mv_lip_rects'][i]
lip_tgt_imgs = img[i:i+1,:, ymin:ymax,xmin:xmax].contiguous()
lip_pred_imgs = pred_img_for_vgg[i:i+1,:, ymin:ymax,xmin:xmax].contiguous()
lip_mse_loss = lip_mse_loss + 1/batch_size * (lip_pred_imgs - lip_tgt_imgs).abs().mean()
try:
lip_lpips_loss = lip_lpips_loss + 1/batch_size * self.criterion_lpips(lip_pred_imgs, lip_tgt_imgs).mean()
except: pass
losses['G_th1kh_mv_img_lip_mae'] = lip_mse_loss
losses['G_th1kh_mv_img_lip_lpips'] = lip_lpips_loss
self.gen_tmp_output['th1kh_recon_mv_imgs'] = pred_img_for_vgg.detach()
self.gen_tmp_output['th1kh_recon_mv_imgs_raw'] = pred_img_raw_for_vgg.detach()
disc_inp_img = {
'image': pred_img_for_vgg,
'image_raw': pred_img_raw_for_vgg,
}
else:
losses['G_th1kh_mv_img_mae_raw'] = (gen_img['image_raw'] - img_raw).abs().mean()
losses['G_th1kh_mv_img_mae'] = (gen_img['image'] - img).abs().mean()
losses['G_th1kh_mv_img_lpips'] = self.criterion_lpips(gen_img['image'], img).mean()
losses['G_th1kh_mv_img_lpips_raw'] = self.criterion_lpips(gen_img['image_raw'], img_raw).mean()
disc_inp_img = {
'image': gen_img['image'],
'image_raw': gen_img['image_raw'],
}
alphas = gen_img['weights_img'].clamp(1e-5, 1 - 1e-5)
losses['G_th1kh_mv_weights_entropy_loss'] = torch.mean(- alphas * torch.log2(alphas) - (1 - alphas) * torch.log2(1 - alphas))
face_mask = batch['th1kh_mv_head_masks_raw'].bool()
nonface_mask = ~ batch['th1kh_mv_head_masks_raw'].bool()
losses['G_th1kh_mv_weights_l1_loss'] = (alphas[nonface_mask]-0).pow(2).mean() + (alphas[face_mask]-1).pow(2).mean()
gen_logits = self.forward_D(disc_inp_img, camera)
losses['G_th1kh_mv_adv'] = torch.nn.functional.softplus(-gen_logits).mean()
if hparams.get("add_ffhq_singe_disc", False):
gen_logits = self.forward_ffhq_D(disc_inp_img, camera)
losses['G_ffhq_adv_maxmimize_model_pred_mv'] = torch.nn.functional.softplus(-gen_logits).mean()
return losses
def run_G_reg(self, batch):
losses = {}
imgs = batch['th1kh_ref_head_imgs']
if (self.global_step+1) % hparams['reg_interval_g'] == 0:
with torch.autograd.profiler.record_function('G_regularize_forward'):
cond={'cond_cano': batch['th1kh_cano_secc'],
'cond_src': batch['th1kh_ref_secc'],
'cond_tgt': batch['th1kh_mv_secc'],
'ref_cameras': batch['th1kh_ref_cameras'],
'ref_alphas': batch['th1kh_ref_head_masks'].float(),
}
initial_coordinates = torch.rand((imgs.shape[0], 1000, 3), device=imgs.device) - 0.5 # [-0.5,0.5]
perturbed_coordinates = initial_coordinates + torch.randn_like(initial_coordinates) * 5e-3
all_coordinates = torch.cat([initial_coordinates, perturbed_coordinates], dim=1)
source_sigma = self.model.sample(coordinates=all_coordinates, directions=torch.randn_like(all_coordinates), img=imgs, cond=cond, update_emas=False)['sigma']
source_sigma_initial = source_sigma[:, :source_sigma.shape[1]//2]
source_sigma_perturbed = source_sigma[:, source_sigma.shape[1]//2:]
density_reg_loss = torch.nn.functional.l1_loss(source_sigma_initial, source_sigma_perturbed)
# we want the pertubed position has similar density
losses['G_th1kh_regularize_density_l1'] = density_reg_loss
return losses
def run_G_reg_cond(self, batch):
losses = {}
if (self.global_step+1) % hparams['reg_interval_g_cond'] == 0:
# Reg pertube ref/mv_secc, see prepare_batch, we have 25% prob pertube ref and 75% pertube mv.
cond = {'cond_cano': batch['th1kh_cano_secc'], 'cond_src': batch['th1kh_ref_secc'], 'cond_tgt': batch['th1kh_pertube_secc0']}
pertube_cond = {'cond_cano': batch['th1kh_cano_secc'], 'cond_src': batch['th1kh_ref_secc'], 'cond_tgt': batch['th1kh_pertube_secc1']}
secc_plane = self.model.cal_secc_plane(cond)
pertube_secc_plane = self.model.cal_secc_plane(pertube_cond)
with torch.autograd.profiler.record_function('G_regularize_forward'):
if hparams.get("secc_pertube_mode", 'randn') in ['randn', 'tv']:
secc_reg_loss = torch.nn.functional.l1_loss(secc_plane, pertube_secc_plane)
# we want the pertubed position has similar density
elif hparams.get("secc_pertube_mode", 'randn') == 'laplacian':
pertube_cond2 = { 'cond_cano': batch['th1kh_cano_secc'], 'cond_src': batch['th1kh_ref_secc'], 'cond_tgt': batch['th1kh_pertube_secc2']}
pertube_secc_plane2 = self.model.cal_secc_plane(pertube_cond2)
interpolate_secc_plane = (pertube_secc_plane + pertube_secc_plane2) / 2
secc_reg_loss = torch.nn.functional.l1_loss(secc_plane, interpolate_secc_plane)
else: raise NotImplementedError()
losses['G_th1kh_regularize_pertube_secc_mae'] = secc_reg_loss
# Reg blinks
blink_cond1 = {'cond_cano': batch['th1kh_cano_secc'], 'cond_src': batch['th1kh_ref_secc'], 'cond_tgt': batch['th1kh_blink_mv_secc1']}
blink_cond2 = {'cond_cano': batch['th1kh_cano_secc'], 'cond_src': batch['th1kh_ref_secc'], 'cond_tgt': batch['th1kh_blink_mv_secc2']}
blink_cond3 = {'cond_cano': batch['th1kh_cano_secc'], 'cond_src': batch['th1kh_ref_secc'], 'cond_tgt': batch['th1kh_blink_mv_secc3']}
blink_secc_plane1 = self.model.cal_secc_plane(blink_cond1)
blink_secc_plane2 = self.model.cal_secc_plane(blink_cond2)
blink_secc_plane3 = self.model.cal_secc_plane(blink_cond3)
interpolate_blink_secc_plane = (blink_secc_plane1 + blink_secc_plane3) / 2
blink_reg_loss = torch.nn.functional.l1_loss(blink_secc_plane2, interpolate_blink_secc_plane)
losses['G_th1kh_regularize_blink_secc_mae'] = blink_reg_loss
return losses
def forward_D_main(self, batch):
"""
we update ema this substep.
"""
FFHQ_DISC_UPDATE_INTERVAL = 4
losses = {}
with torch.autograd.profiler.record_function('D_minimize_fake_forward'):
# gt ref img & Dmain
ref_cameras = batch['th1kh_ref_cameras']
ref_img_tmp_image = batch['th1kh_ref_head_imgs'].detach().requires_grad_(True)
ref_img_tmp_image_raw = batch['th1kh_ref_head_imgs_raw'].detach().requires_grad_(True)
th1kh_ref_img_tmp = {'image': ref_img_tmp_image, 'image_raw': ref_img_tmp_image_raw}
th1kh_ref_logits = self.forward_D(th1kh_ref_img_tmp, ref_cameras)
losses['D_th1kh_maximize_gt_ref'] = torch.nn.functional.softplus(-th1kh_ref_logits).mean()
if hparams.get("add_ffhq_singe_disc", False) and (self.global_step+1) % FFHQ_DISC_UPDATE_INTERVAL == 0:
ffhq_ref_img_tmp = {'image': batch['ffhq_head_imgs'].detach().requires_grad_(True),'image_raw': batch['ffhq_head_imgs_raw'].detach().requires_grad_(True)}
ffhq_ref_logits = self.forward_ffhq_D(ffhq_ref_img_tmp, ref_cameras) # ref_camera will be mul 0 in forward_ffhq_D
losses['D_ffhq_maximize_gt_ref'] = torch.nn.functional.softplus(-ffhq_ref_logits).mean()
# gt ref img & gradient penalty
if (self.global_step + 1) % hparams['reg_interval_d'] == 0 and self.training is True:
with conv2d_gradfix.no_weight_gradients():
ref_r1_grads = torch.autograd.grad(outputs=[th1kh_ref_logits.sum()], inputs=[th1kh_ref_img_tmp['image'], th1kh_ref_img_tmp['image_raw']], create_graph=True, only_inputs=True)
ref_r1_grads_image = ref_r1_grads[0]
ref_r1_grads_image_raw = ref_r1_grads[1]
ref_r1_penalty_raw = ref_r1_grads_image_raw.square().sum([1,2,3]).mean()
ref_r1_penalty_image = ref_r1_grads_image.square().sum([1,2,3]).mean()
losses['D_th1kh_gradient_penalty_gt_ref'] = (ref_r1_penalty_image + ref_r1_penalty_raw) / 2
if hparams.get("add_ffhq_singe_disc", False):
with conv2d_gradfix.no_weight_gradients():
ref_r1_grads = torch.autograd.grad(outputs=[ffhq_ref_logits.sum()], inputs=[ffhq_ref_img_tmp['image'], ffhq_ref_img_tmp['image_raw']], create_graph=True, only_inputs=True)
ref_r1_grads_image = ref_r1_grads[0]
ref_r1_grads_image_raw = ref_r1_grads[1]
ref_r1_penalty_raw = ref_r1_grads_image_raw.square().sum([1,2,3]).mean()
ref_r1_penalty_image = ref_r1_grads_image.square().sum([1,2,3]).mean()
losses['D_ffhq_gradient_penalty_gt_ref'] = (ref_r1_penalty_image + ref_r1_penalty_raw) / 2
# pred mv img & D minimize
if 'th1kh_recon_mv_imgs' in self.gen_tmp_output:
camera = batch['th1kh_mv_cameras']
disc_inp_img = {
'image': self.gen_tmp_output['th1kh_recon_mv_imgs'],
'image_raw': self.gen_tmp_output['th1kh_recon_mv_imgs_raw'],
}
gen_logits = self.forward_D(disc_inp_img, camera, update_emas=True)
losses['D_th1kh_minimize_model_pred_mv'] = torch.nn.functional.softplus(gen_logits).mean()
if hparams.get("add_ffhq_singe_disc", False) and (self.global_step+1) % FFHQ_DISC_UPDATE_INTERVAL == 0:
gen_logits = self.forward_ffhq_D(disc_inp_img, camera, update_emas=True)
losses['D_ffhq_minimize_model_pred_mv'] = torch.nn.functional.softplus(gen_logits).mean()
# gt mv img & D maximize
mv_cameras = batch['th1kh_mv_cameras']
mv_img_tmp_image = batch['th1kh_mv_head_imgs'].detach().requires_grad_(True)
mv_img_tmp_image_raw = batch['th1kh_mv_head_imgs_raw'].detach().requires_grad_(True)
th1kh_mv_img_tmp = {'image': mv_img_tmp_image, 'image_raw': mv_img_tmp_image_raw}
th1kh_mv_logits = self.forward_D(th1kh_mv_img_tmp, mv_cameras)
losses['D_th1kh_maximize_gt_mv'] = torch.nn.functional.softplus(-th1kh_mv_logits).mean()
# gt mv img & gradient penalty
if (self.global_step + 1) % hparams['reg_interval_d'] == 0 and self.training is True:
with conv2d_gradfix.no_weight_gradients():
mv_r1_grads = torch.autograd.grad(outputs=[th1kh_mv_logits.sum()], inputs=[th1kh_mv_img_tmp['image'], th1kh_mv_img_tmp['image_raw']], create_graph=True, only_inputs=True)
mv_r1_grads_image = mv_r1_grads[0]
mv_r1_grads_image_raw = mv_r1_grads[1]
mv_r1_penalty_raw = mv_r1_grads_image_raw.square().sum([1,2,3]).mean()
mv_r1_penalty_image = mv_r1_grads_image.square().sum([1,2,3]).mean()
losses['D_th1kh_gradient_penalty_gt_mv'] = (mv_r1_penalty_image + mv_r1_penalty_raw) / 2
self.gen_tmp_output = {}
return losses
def _training_step(self, sample, batch_idx, optimizer_idx):
if len(sample) == 0:
return None
if optimizer_idx == 0:
sample = self.prepare_batch(sample)
self.cache_sample = sample
else:
sample = self.cache_sample
losses = {}
if optimizer_idx == 0:
# Train Generator
if hparams['two_stage_training']:
if self.global_step >= self.start_adv_iters:
# only the resolution module requires grad
self.model.on_train_superresolution()
if hparams.get('also_update_decoder'):
self.model.decoder.requires_grad_(True)
else:
# only the nerf module requires grad
self.model.on_train_full_model()
else:
self.model.on_train_full_model()
losses.update(self.run_G_th1kh_src2src_image(sample)) # 提升identity similarity, 很必要, 否则会相似度变差
losses.update(self.run_G_th1kh_src2tgt_image(sample))
losses.update(self.run_G_reg(sample))
losses.update(self.run_G_reg_cond(sample))
loss_weights = {
'G_th1kh_ref_img_mae': hparams.get("lambda_mse", 1.0),
'G_th1kh_ref_img_mae_raw': hparams.get("lambda_mse", 1.0),
'G_th1kh_ref_img_lpips': 0.1,
'G_th1kh_ref_img_lpips_raw': 0.1,
'G_th1kh_ref_adv': hparams['lambda_th1kh_mv_adv'] if self.global_step >= self.start_adv_iters else 0.,
'G_th1kh_ref_weights_l1_loss': hparams.get("lambda_weights_l1", 0.5),
'G_th1kh_ref_weights_entropy_loss': hparams.get("lambda_weights_entropy", 0.05),
'G_th1kh_mv_img_mae': hparams.get("lambda_mse", 1.0),
'G_th1kh_mv_img_mae_raw': hparams.get("lambda_mse", 1.0),
'G_th1kh_mv_img_lpips': 0.1,
'G_th1kh_mv_img_lpips_raw': 0.1,
'G_th1kh_mv_adv': hparams['lambda_th1kh_mv_adv'] if self.global_step >= self.start_adv_iters else 0.,
'G_th1kh_mv_weights_l1_loss': hparams.get("lambda_weights_l1", 0.3),
'G_th1kh_mv_weights_entropy_loss': hparams.get("lambda_weights_entropy", 0.01),
'G_th1kh_ref_img_lip_mae': 0.5,
'G_th1kh_ref_img_lip_lpips': 0.05,
'G_th1kh_mv_img_lip_mae': 0.5,
'G_th1kh_mv_img_lip_lpips': 0.05,
'G_th1kh_regularize_density_l1': hparams['lambda_density_reg'] * hparams['reg_interval_g'],
'G_ffhq_adv_maxmimize_model_pred_mv': hparams['lambda_ffhq_mv_adv'] if self.global_step >= self.start_adv_iters else 0.,
'secc_deform_l1_losses': 0.1,
}
if 'G_th1kh_regularize_pertube_secc_mae' in losses:
target_pertube_blink_secc_loss = hparams.get('target_pertube_blink_secc_loss', 0.15)
target_pertube_secc_loss = hparams.get('target_pertube_secc_loss', 0.15)
current_pertube_blink_secc_loss = losses['G_th1kh_regularize_blink_secc_mae'].item()
current_pertube_secc_loss = losses['G_th1kh_regularize_pertube_secc_mae'].item()
grad_lambda_pertube_blink_secc = (math.log10(current_pertube_blink_secc_loss+1e-15) - math.log10(target_pertube_blink_secc_loss+1e-15)) # 如果需要增大lambda_pertube_secc, 则current_loss大于targt, grad值大于0
grad_lambda_pertube_secc = (math.log10(current_pertube_secc_loss+1e-15) - math.log10(target_pertube_secc_loss+1e-15)) # 如果需要增大lambda_pertube_secc, 则current_loss大于targt, grad值大于0
lr_lambda_pertube_secc = hparams.get('lr_lambda_pertube_secc', 0.01)
self.model.lambda_pertube_blink_secc.data = self.model.lambda_pertube_blink_secc.data + grad_lambda_pertube_blink_secc * lr_lambda_pertube_secc
self.model.lambda_pertube_blink_secc.data.clamp_(0, 2.)
self.model.lambda_pertube_secc.data = self.model.lambda_pertube_secc.data + grad_lambda_pertube_secc * lr_lambda_pertube_secc
self.model.lambda_pertube_secc.data.clamp_(0, 0.2)
if hparams['target_pertube_secc_loss'] == 0.:
self.model.lambda_pertube_secc.data = self.model.lambda_pertube_secc.data * 0.
if hparams['target_pertube_blink_secc_loss'] == 0.:
self.model.lambda_pertube_blink_secc.data = self.model.lambda_pertube_blink_secc.data * 0.
losses['lambda_pertube_blink_secc'] = self.model.lambda_pertube_blink_secc.item()
losses['lambda_pertube_secc'] = self.model.lambda_pertube_secc.item()
loss_weights['G_th1kh_regularize_pertube_secc_mae'] = self.model.lambda_pertube_secc.item() * hparams['reg_interval_g_cond'] # 把新的lambda更新到loss_weights里面
loss_weights['G_th1kh_regularize_blink_secc_mae'] = self.model.lambda_pertube_blink_secc.item() * hparams['reg_interval_g_cond'] # 把新的lambda更新到loss_weights里面
if hparams.get("disable_highreso_at_stage1", False) and hparams['two_stage_training'] and self.global_step >= self.start_adv_iters:
loss_weights['G_th1kh_mv_img_mae'] = 0.
loss_weights['G_th1kh_mv_img_lpips'] = 0.
elif optimizer_idx == 1:
# Train Disc
if self.global_step < hparams["start_adv_iters"] - 10000:
# start train disc too early is a waste of resource
return None
losses.update(self.forward_D_main(sample))
loss_weights = {
'D_th1kh_maximize_gt_ref': 1.0,
'D_ffhq_maximize_gt_ref': 1.0,
'D_th1kh_maximize_gt_mv': 1.0,
'D_th1kh_minimize_model_pred_mv': 1.0,
'D_ffhq_minimize_model_pred_mv': 1.0,
'D_th1kh_gradient_penalty_gt_ref': hparams['lambda_gradient_penalty'] * hparams['reg_interval_d'],
'D_th1kh_gradient_penalty_gt_mv': hparams['lambda_gradient_penalty'] * hparams['reg_interval_d'],
'D_ffhq_gradient_penalty_gt_ref': hparams['lambda_gradient_penalty'] * hparams['reg_interval_d'],
}
self.gen_tmp_output = {}
else:
return None
total_loss = sum([loss_weights[k] * v for k, v in losses.items() if isinstance(v, torch.Tensor) and v.requires_grad])
# total_loss = sum([loss_weights.get(k, 1.0) * v for k, v in losses.items() if isinstance(v, torch.Tensor) and v.requires_grad])
if len(losses) == 0:
return None
return total_loss, losses
#####################
# Validation
#####################
def validation_start(self):
self.gen_dir = os.path.join(hparams['work_dir'], f'validation_results')
os.makedirs(self.gen_dir, exist_ok=True)
@torch.no_grad()
def validation_step(self, sample, batch_idx):
self.gen_dir = os.path.join(hparams['work_dir'], f'validation_results')
os.makedirs(self.gen_dir, exist_ok=True)
outputs = {}
losses = {}
if len(sample) == 0:
return None
sample = self.prepare_batch(sample)
rank = 0 if len(set(os.environ['CUDA_VISIBLE_DEVICES'].split(","))) == 1 else dist.get_rank()
losses.update(self.run_G_th1kh_src2tgt_image(sample))
losses.update(self.run_G_reg(sample))
losses.update(self.run_G_reg_cond(sample))
losses.update(self.forward_D_main(sample))
outputs['losses'] = losses
outputs['total_loss'] = sum(outputs['losses'].values())
outputs = tensors_to_scalars(outputs)
if self.global_step % hparams['valid_infer_interval'] == 0 \
and batch_idx < hparams['num_valid_plots'] and rank == 0:
imgs_ref = sample['th1kh_ref_head_imgs']
gen_img = self.model.forward(imgs_ref, sample['th1kh_mv_cameras'],
cond={'cond_cano': sample['th1kh_cano_secc'],
'cond_src': sample['th1kh_ref_secc'],
'cond_tgt': sample['th1kh_mv_secc'],
'ref_head_img': imgs_ref,
'ref_cameras': sample['th1kh_ref_cameras'],
'ref_alphas': sample['th1kh_ref_head_masks'].float(),
}, noise_mode='const')
gen_img_recon = self.model.forward(imgs_ref, sample['th1kh_ref_cameras'],
cond={'cond_cano': sample['th1kh_cano_secc'],
'cond_src': sample['th1kh_ref_secc'],
'cond_tgt': sample['th1kh_ref_secc'],
'ref_head_img': imgs_ref,
'ref_cameras': sample['th1kh_ref_cameras'],
'ref_alphas': sample['th1kh_ref_head_masks'].float(),
}, noise_mode='const')
imgs_recon = gen_img_recon['image'].permute(0, 2,3,1)
imgs_recon_raw = filtered_resizing(gen_img_recon['image_raw'], size=512, f=self.resample_filter, filter_mode='antialiased').permute(0, 2,3,1)
imgs_recon_depth = gen_img_recon['image_depth'].permute(0, 2,3,1)
imgs_pred_raw = filtered_resizing(gen_img['image_raw'], size=512, f=self.resample_filter, filter_mode='antialiased').permute(0, 2,3,1)
imgs_pred = gen_img['image'].permute(0, 2,3,1)
imgs_pred_depth = gen_img['image_depth'].permute(0, 2,3,1)
imgs_ref = imgs_ref.permute(0,2,3,1)
imgs_mv = sample['th1kh_mv_head_imgs'].permute(0,2,3,1) # [B, H, W, 3]
for i in range(len(imgs_pred)):
idx_string = format(i+batch_idx * hparams['batch_size'], "05d")
base_fn = f"{idx_string}"
img_ref_mv_recon_pred = torch.cat([imgs_ref[i], imgs_mv[i], imgs_recon_raw[i], imgs_pred_raw[i], imgs_recon[i], imgs_pred[i]], dim=1)
ref_secc = filtered_resizing(sample['th1kh_ref_secc'][i].unsqueeze(0), size=512, f=self.resample_filter, filter_mode='antialiased')[0].permute(1,2,0)
mv_secc = filtered_resizing(sample['th1kh_mv_secc'][i].unsqueeze(0), size=512, f=self.resample_filter, filter_mode='antialiased')[0].permute(1,2,0)
img_ref_mv_recon_pred = torch.cat([img_ref_mv_recon_pred, ref_secc], dim=1)
img_ref_mv_recon_pred = torch.cat([img_ref_mv_recon_pred, mv_secc], dim=1)
self.save_rgb_to_fname(img_ref_mv_recon_pred, f"{self.gen_dir}/th1kh_images_rgb_iter{self.global_step}/ref_mv_reconraw_predraw_recon_pred_{base_fn}.png")
img_depth_recon_pred = torch.cat([imgs_recon_depth[i], imgs_pred_depth[i]], dim=1)
self.save_depth_to_fname(img_depth_recon_pred, f"{self.gen_dir}/th1kh_images_depth_iter{self.global_step}/recon_pred_{base_fn}.png")
if batch_idx == 0 and (not torch.distributed.is_initialized() or torch.distributed.get_rank() == 0):
image_name = "data/raw/examples/Macron.png"
imgs_ref = cv2.imread(image_name)
img = load_img_to_512_hwc_array(image_name)
segmap = self.seg_model._cal_seg_map(img)
head_img = self.seg_model._seg_out_img_with_segmap(img, segmap, mode='head')[0]
head_mask = segmap[[1,3,5] , :, :].sum(axis=0)[None,:] > 0.5 # glasses 也属于others
head_mask = torch.tensor(head_mask).float().reshape([1,1,512,512]).cuda()
imgs_ref = ((torch.tensor(head_img) - 127.5)/127.5).float().unsqueeze(0).permute(0, 3, 1,2).cuda() # [b,c,h,w]
from data_gen.utils.process_image.fit_3dmm_landmark import fit_3dmm_for_a_image
coeff_dict = fit_3dmm_for_a_image(image_name, save=False)
id = torch.tensor(coeff_dict['id']).float().cuda().reshape([1, 80])
exp = torch.tensor(coeff_dict['exp']).float().cuda().reshape([1, 64])
with torch.no_grad():
_, cano_secc = self.secc_renderer(id,exp*0,sample['th1kh_ref_eulers']*0,sample['th1kh_ref_trans']*0)
_, ref_secc = self.secc_renderer(id,exp,sample['th1kh_ref_eulers']*0,sample['th1kh_ref_trans']*0)
gen_img = self.model.forward(imgs_ref, sample['th1kh_mv_cameras'][0:1],
cond={'cond_cano': cano_secc,
'cond_src': ref_secc,
'cond_tgt': ref_secc,
'ref_head_img': imgs_ref,
'ref_cameras': sample['th1kh_mv_cameras'][0:1],
'ref_alphas': head_mask},
noise_mode='const')
img = gen_img['image'].permute(0, 2,3,1)[0]
self.save_rgb_to_fname(img, f"{self.gen_dir}/ood_images_rgb_iter{self.global_step}/May.png")
return outputs
def masked_error_loss(self, img_pred, img_gt, mask, unmasked_weight=0.1, mode='l1'):
# mask: [B, 1, H, W]
# 对raw图像, 因为deform的原因背景没法全黑, 导致这部分mse过高, 我们将其mask掉, 只计算人脸部分
masked_weight = 1.0
weight_mask = mask.float() * masked_weight + (~mask).float() * unmasked_weight
if mode == 'l1':
error = (img_pred - img_gt).abs().sum(dim=1, keepdim=True) * weight_mask
else:
error = (img_pred - img_gt).pow(2).sum(dim=1, keepdim=True) * weight_mask
error.clamp_(0, max(0.5, error.quantile(0.8).item())) # clamp掉较高loss的pixel, 避免姿态没对齐的pixel导致的异常值占主导影响训练
loss = error.mean()
return loss
def set_unmasked_to_black(self, img, mask):
out_img = img * mask.float() - (~mask).float() # -1 denotes black
return out_img
def dilate(self, bin_img, ksize=5, mode='max_pool'):
"""
mode: max_pool or avg_pool
"""
# bin_img, [b, 1, h, w]
pad = (ksize-1)//2
bin_img = F.pad(bin_img, pad=[pad,pad,pad,pad], mode='reflect')
if mode == 'max_pool':
out = F.max_pool2d(bin_img, kernel_size=ksize, stride=1, padding=0)
else:
out = F.avg_pool2d(bin_img, kernel_size=ksize, stride=1, padding=0)
return out
def dilate_mask(self, mask, ksize=21):
mask = self.dilate(mask, ksize=ksize, mode='max_pool')
return mask
def validation_end(self, outputs):
return super().validation_end(outputs)
|