|
|
|
|
|
import os |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gradio as gr |
|
import os |
|
import cv2 |
|
from PIL import Image |
|
import numpy as np |
|
from segment_anything import SamPredictor, sam_model_registry |
|
import torch |
|
from diffusers import StableDiffusionBrushNetPipeline, BrushNetModel, UniPCMultistepScheduler |
|
import random |
|
|
|
mobile_sam = sam_model_registry['vit_h'](checkpoint='data/ckpt/sam_vit_h_4b8939.pth').to("cuda") |
|
mobile_sam.eval() |
|
mobile_predictor = SamPredictor(mobile_sam) |
|
colors = [(255, 0, 0), (0, 255, 0)] |
|
markers = [1, 5] |
|
|
|
|
|
image_examples = [ |
|
["examples/brushnet/src/test_image.jpg", "A beautiful cake on the table", "examples/brushnet/src/test_mask.jpg", 0, [], [Image.open("examples/brushnet/src/test_result.png")]], |
|
["examples/brushnet/src/example_1.jpg", "A man in Chinese traditional clothes", "examples/brushnet/src/example_1_mask.jpg", 1, [], [Image.open("examples/brushnet/src/example_1_result.png")]], |
|
["examples/brushnet/src/example_3.jpg", "a cut toy on the table", "examples/brushnet/src/example_3_mask.jpg", 2, [], [Image.open("examples/brushnet/src/example_3_result.png")]], |
|
["examples/brushnet/src/example_4.jpeg", "a car driving in the wild", "examples/brushnet/src/example_4_mask.jpg", 3, [], [Image.open("examples/brushnet/src/example_4_result.png")]], |
|
["examples/brushnet/src/example_5.jpg", "a charming woman wearing dress standing in the dark forest", "examples/brushnet/src/example_5_mask.jpg", 4, [], [Image.open("examples/brushnet/src/example_5_result.png")]], |
|
] |
|
|
|
|
|
|
|
|
|
base_model_path = "runwayml/stable-diffusion-v1-5" |
|
|
|
|
|
brushnet_path = "data/ckpt/segmentation_mask_brushnet_ckpt" |
|
|
|
brushnet = BrushNetModel.from_pretrained(brushnet_path, torch_dtype=torch.float16,safety_checker=None) |
|
pipe = StableDiffusionBrushNetPipeline.from_pretrained( |
|
base_model_path, brushnet=brushnet, torch_dtype=torch.float16, low_cpu_mem_usage=False,safety_checker=None |
|
) |
|
|
|
|
|
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) |
|
|
|
|
|
|
|
pipe.enable_model_cpu_offload() |
|
|
|
def resize_image(input_image, resolution): |
|
H, W, C = input_image.shape |
|
H = float(H) |
|
W = float(W) |
|
k = float(resolution) / min(H, W) |
|
H *= k |
|
W *= k |
|
H = int(np.round(H / 64.0)) * 64 |
|
W = int(np.round(W / 64.0)) * 64 |
|
img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA) |
|
return img |
|
|
|
|
|
def process(input_image, |
|
original_image, |
|
original_mask, |
|
input_mask, |
|
selected_points, |
|
prompt, |
|
negative_prompt, |
|
blended, |
|
invert_mask, |
|
control_strength, |
|
seed, |
|
randomize_seed, |
|
guidance_scale, |
|
num_inference_steps): |
|
if original_image is None: |
|
raise gr.Error('Please upload the input image') |
|
if (original_mask is None or len(selected_points)==0) and input_mask is None: |
|
raise gr.Error("Please click the region where you hope unchanged/changed, or upload a white-black Mask image") |
|
|
|
|
|
if isinstance(original_image, int): |
|
image_name = image_examples[original_image][0] |
|
original_image = cv2.imread(image_name) |
|
original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB) |
|
|
|
if input_mask is not None: |
|
H,W=original_image.shape[:2] |
|
original_mask = cv2.resize(input_mask, (W, H)) |
|
else: |
|
original_mask = np.clip(255 - original_mask, 0, 255).astype(np.uint8) |
|
|
|
if invert_mask: |
|
original_mask=255-original_mask |
|
|
|
mask = 1.*(original_mask.sum(-1)>255)[:,:,np.newaxis] |
|
masked_image = original_image * (1-mask) |
|
|
|
init_image = Image.fromarray(masked_image.astype(np.uint8)).convert("RGB") |
|
mask_image = Image.fromarray(original_mask.astype(np.uint8)).convert("RGB") |
|
mask_image.save("./mask.png") |
|
|
|
generator = torch.Generator("cuda").manual_seed(random.randint(0,2147483647) if randomize_seed else seed) |
|
image_num = 3 |
|
image = pipe( |
|
[prompt]*image_num, |
|
init_image, |
|
mask_image, |
|
num_inference_steps=num_inference_steps, |
|
guidance_scale=guidance_scale, |
|
generator=generator, |
|
brushnet_conditioning_scale=float(control_strength), |
|
negative_prompt=[negative_prompt]*image_num, |
|
).images |
|
|
|
if blended: |
|
if control_strength<1.0: |
|
raise gr.Error('Using blurred blending with control strength less than 1.0 is not allowed') |
|
blended_image=[] |
|
|
|
mask_blurred = cv2.GaussianBlur(mask*255, (21, 21), 0)/255 |
|
mask_blurred = mask_blurred[:,:,np.newaxis] |
|
mask = 1-(1-mask) * (1-mask_blurred) |
|
for image_i in image: |
|
image_np=np.array(image_i) |
|
image_pasted=original_image * (1-mask) + image_np*mask |
|
|
|
image_pasted=image_pasted.astype(image_np.dtype) |
|
blended_image.append(Image.fromarray(image_pasted)) |
|
|
|
image=blended_image |
|
|
|
return image |
|
|
|
block = gr.Blocks( |
|
theme=gr.themes.Soft( |
|
radius_size=gr.themes.sizes.radius_none, |
|
text_size=gr.themes.sizes.text_md |
|
) |
|
).queue() |
|
with block: |
|
with gr.Row(): |
|
with gr.Column(): |
|
|
|
gr.HTML(f""" |
|
<div style="text-align: center;"> |
|
<h1>BrushNet: A Plug-and-Play Image Inpainting Model with Decomposed Dual-Branch Diffusion</h1> |
|
<div style="display: flex; justify-content: center; align-items: center; text-align: center;"> |
|
<a href=""></a> |
|
<a href='https://tencentarc.github.io/BrushNet/'><img src='https://img.shields.io/badge/Project_Page-BrushNet-green' alt='Project Page'></a> |
|
<a href='https://arxiv.org/abs/2403.06976'><img src='https://img.shields.io/badge/Paper-Arxiv-blue'></a> |
|
</div> |
|
</br> |
|
</div> |
|
""") |
|
|
|
|
|
with gr.Accordion(label="🧭 Instructions:", open=True, elem_id="accordion"): |
|
with gr.Row(equal_height=True): |
|
gr.Markdown(""" |
|
- ⭐️ <b>step1: </b>Upload or select one image from Example |
|
- ⭐️ <b>step2: </b>Click on Input-image to select the object to be retained (or upload a white-black Mask image, in which white color indicates the region you want to keep unchanged). You can tick the 'Invert Mask' box to switch region unchanged and change. |
|
- ⭐️ <b>step3: </b>Input prompt for generating new contents |
|
- ⭐️ <b>step4: </b>Click Run button |
|
""") |
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Column(elem_id="Input"): |
|
with gr.Row(): |
|
with gr.Tabs(elem_classes=["feedback"]): |
|
with gr.TabItem("Input Image"): |
|
input_image = gr.Image(type="numpy", label="input",scale=2, height=640) |
|
original_image = gr.State(value=None,label="index") |
|
original_mask = gr.State(value=None) |
|
selected_points = gr.State([],label="select points") |
|
with gr.Row(elem_id="Seg"): |
|
radio = gr.Radio(['foreground', 'background'], label='Click to seg: ', value='foreground',scale=2) |
|
undo_button = gr.Button('Undo seg', elem_id="btnSEG",scale=1) |
|
prompt = gr.Textbox(label="Prompt", placeholder="Please input your prompt",value='',lines=1) |
|
negative_prompt = gr.Text( |
|
label="Negative Prompt", |
|
max_lines=5, |
|
placeholder="Please input your negative prompt", |
|
value='ugly, low quality',lines=1 |
|
) |
|
with gr.Group(): |
|
with gr.Row(): |
|
blending = gr.Checkbox(label="Blurred Blending", value=False) |
|
invert_mask = gr.Checkbox(label="Invert Mask", value=True) |
|
run_button = gr.Button("Run",elem_id="btn") |
|
|
|
with gr.Accordion("More input params (highly-recommended)", open=False, elem_id="accordion1"): |
|
control_strength = gr.Slider( |
|
label="Control Strength: ", show_label=True, minimum=0, maximum=1.1, value=1, step=0.01 |
|
) |
|
with gr.Group(): |
|
seed = gr.Slider( |
|
label="Seed: ", minimum=0, maximum=2147483647, step=1, value=551793204 |
|
) |
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=False) |
|
|
|
with gr.Group(): |
|
with gr.Row(): |
|
guidance_scale = gr.Slider( |
|
label="Guidance scale", |
|
minimum=1, |
|
maximum=12, |
|
step=0.1, |
|
value=12, |
|
) |
|
num_inference_steps = gr.Slider( |
|
label="Number of inference steps", |
|
minimum=1, |
|
maximum=50, |
|
step=1, |
|
value=50, |
|
) |
|
with gr.Row(elem_id="Image"): |
|
with gr.Tabs(elem_classes=["feedback1"]): |
|
with gr.TabItem("User-specified Mask Image (Optional)"): |
|
input_mask = gr.Image(type="numpy", label="Mask Image", height=640) |
|
|
|
with gr.Column(): |
|
with gr.Tabs(elem_classes=["feedback"]): |
|
with gr.TabItem("Outputs"): |
|
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", preview=True) |
|
with gr.Row(): |
|
def process_example(input_image, prompt, input_mask, original_image, selected_points,result_gallery): |
|
return input_image, prompt, input_mask, original_image, [], result_gallery |
|
example = gr.Examples( |
|
label="Input Example", |
|
examples=image_examples, |
|
inputs=[input_image, prompt, input_mask, original_image, selected_points,result_gallery], |
|
outputs=[input_image, prompt, input_mask, original_image, selected_points], |
|
fn=process_example, |
|
run_on_click=True, |
|
examples_per_page=10 |
|
) |
|
|
|
|
|
def store_img(img): |
|
|
|
if min(img.shape[0], img.shape[1]) > 512: |
|
img = resize_image(img, 512) |
|
if max(img.shape[0], img.shape[1])*1.0/min(img.shape[0], img.shape[1])>2.0: |
|
raise gr.Error('image aspect ratio cannot be larger than 2.0') |
|
return img, img, [], None |
|
|
|
input_image.upload( |
|
store_img, |
|
[input_image], |
|
[input_image, original_image, selected_points] |
|
) |
|
|
|
|
|
def segmentation(img, sel_pix): |
|
|
|
points = [] |
|
labels = [] |
|
for p, l in sel_pix: |
|
points.append(p) |
|
labels.append(l) |
|
mobile_predictor.set_image(img if isinstance(img, np.ndarray) else np.array(img)) |
|
with torch.no_grad(): |
|
masks, _, _ = mobile_predictor.predict(point_coords=np.array(points), point_labels=np.array(labels), multimask_output=False) |
|
|
|
output_mask = np.ones((masks.shape[1], masks.shape[2], 3))*255 |
|
for i in range(3): |
|
output_mask[masks[0] == True, i] = 0.0 |
|
|
|
mask_all = np.ones((masks.shape[1], masks.shape[2], 3)) |
|
color_mask = np.random.random((1, 3)).tolist()[0] |
|
for i in range(3): |
|
mask_all[masks[0] == True, i] = color_mask[i] |
|
masked_img = img / 255 * 0.3 + mask_all * 0.7 |
|
masked_img = masked_img*255 |
|
|
|
for point, label in sel_pix: |
|
cv2.drawMarker(masked_img, point, colors[label], markerType=markers[label], markerSize=20, thickness=5) |
|
return masked_img, output_mask |
|
|
|
def get_point(img, sel_pix, point_type, evt: gr.SelectData): |
|
if point_type == 'foreground': |
|
sel_pix.append((evt.index, 1)) |
|
elif point_type == 'background': |
|
sel_pix.append((evt.index, 0)) |
|
else: |
|
sel_pix.append((evt.index, 1)) |
|
|
|
if isinstance(img, int): |
|
image_name = image_examples[img][0] |
|
img = cv2.imread(image_name) |
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) |
|
|
|
|
|
masked_img, output_mask = segmentation(img, sel_pix) |
|
return masked_img.astype(np.uint8), output_mask |
|
|
|
input_image.select( |
|
get_point, |
|
[original_image, selected_points, radio], |
|
[input_image, original_mask], |
|
) |
|
|
|
|
|
def undo_points(orig_img, sel_pix): |
|
|
|
output_mask = None |
|
if len(sel_pix) != 0: |
|
if isinstance(orig_img, int): |
|
temp = cv2.imread(image_examples[orig_img][0]) |
|
temp = cv2.cvtColor(temp, cv2.COLOR_BGR2RGB) |
|
else: |
|
temp = orig_img.copy() |
|
sel_pix.pop() |
|
|
|
if len(sel_pix) !=0: |
|
temp, output_mask = segmentation(temp, sel_pix) |
|
return temp.astype(np.uint8), output_mask |
|
else: |
|
gr.Error("Nothing to Undo") |
|
|
|
undo_button.click( |
|
undo_points, |
|
[original_image, selected_points], |
|
[input_image, original_mask] |
|
) |
|
|
|
ips=[input_image, original_image, original_mask, input_mask, selected_points, prompt, negative_prompt, blending, invert_mask, control_strength, seed, randomize_seed, guidance_scale, num_inference_steps] |
|
run_button.click(fn=process, inputs=ips, outputs=[result_gallery]) |
|
|
|
|
|
block.launch() |