Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- README.md +50 -0
- app.py +341 -0
- data/ckpt/realisticVisionV60B1_v51VAE/feature_extractor/preprocessor_config.json +27 -0
- data/ckpt/realisticVisionV60B1_v51VAE/model_index.json +37 -0
- data/ckpt/realisticVisionV60B1_v51VAE/safety_checker/config.json +28 -0
- data/ckpt/realisticVisionV60B1_v51VAE/safety_checker/pytorch_model.bin +3 -0
- data/ckpt/realisticVisionV60B1_v51VAE/scheduler/scheduler_config.json +15 -0
- data/ckpt/realisticVisionV60B1_v51VAE/text_encoder/config.json +24 -0
- data/ckpt/realisticVisionV60B1_v51VAE/text_encoder/pytorch_model.bin +3 -0
- data/ckpt/realisticVisionV60B1_v51VAE/tokenizer/merges.txt +0 -0
- data/ckpt/realisticVisionV60B1_v51VAE/tokenizer/special_tokens_map.json +30 -0
- data/ckpt/realisticVisionV60B1_v51VAE/tokenizer/tokenizer_config.json +30 -0
- data/ckpt/realisticVisionV60B1_v51VAE/tokenizer/vocab.json +0 -0
- data/ckpt/realisticVisionV60B1_v51VAE/unet/config.json +67 -0
- data/ckpt/realisticVisionV60B1_v51VAE/unet/diffusion_pytorch_model.bin +3 -0
- data/ckpt/realisticVisionV60B1_v51VAE/vae/config.json +31 -0
- data/ckpt/realisticVisionV60B1_v51VAE/vae/diffusion_pytorch_model.bin +3 -0
- data/ckpt/sam_vit_h_4b8939.pth +3 -0
- data/ckpt/segmentation_mask_brushnet_ckpt/config.json +58 -0
- data/ckpt/segmentation_mask_brushnet_ckpt/diffusion_pytorch_model.safetensors +3 -0
- examples/brushnet/src/example_1.jpg +0 -0
- examples/brushnet/src/example_1_mask.jpg +0 -0
- examples/brushnet/src/example_1_result.png +0 -0
- examples/brushnet/src/example_3.jpg +0 -0
- examples/brushnet/src/example_3_mask.jpg +0 -0
- examples/brushnet/src/example_3_result.png +0 -0
- examples/brushnet/src/example_4.jpeg +0 -0
- examples/brushnet/src/example_4_mask.jpg +0 -0
- examples/brushnet/src/example_4_result.png +0 -0
- examples/brushnet/src/example_5.jpg +0 -0
- examples/brushnet/src/example_5_mask.jpg +0 -0
- examples/brushnet/src/example_5_result.png +0 -0
- examples/brushnet/src/test_image.jpg +0 -0
- examples/brushnet/src/test_mask.jpg +0 -0
- examples/brushnet/src/test_result.png +0 -0
- mask.png +0 -0
- requirements.txt +19 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
file filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: BrushNet
|
3 |
+
emoji: ⚡
|
4 |
+
colorFrom: yellow
|
5 |
+
colorTo: indigo
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.50.2
|
8 |
+
python_version: 3.9
|
9 |
+
app_file: app.py
|
10 |
+
pinned: false
|
11 |
+
license: apache-2.0
|
12 |
+
---
|
13 |
+
|
14 |
+
# BrushNet
|
15 |
+
|
16 |
+
This repository contains the gradio demo of the paper "BrushNet: A Plug-and-Play Image Inpainting Model with Decomposed Dual-Branch Diffusion"
|
17 |
+
|
18 |
+
Keywords: Image Inpainting, Diffusion Models, Image Generation
|
19 |
+
|
20 |
+
> [Xuan Ju](https://github.com/juxuan27)<sup>12</sup>, [Xian Liu](https://alvinliu0.github.io/)<sup>12</sup>, [Xintao Wang](https://xinntao.github.io/)<sup>1*</sup>, [Yuxuan Bian](https://scholar.google.com.hk/citations?user=HzemVzoAAAAJ&hl=zh-CN&oi=ao)<sup>2</sup>, [Ying Shan](https://www.linkedin.com/in/YingShanProfile/)<sup>1</sup>, [Qiang Xu](https://cure-lab.github.io/)<sup>2*</sup><br>
|
21 |
+
> <sup>1</sup>ARC Lab, Tencent PCG <sup>2</sup>The Chinese University of Hong Kong <sup>*</sup>Corresponding Author
|
22 |
+
|
23 |
+
|
24 |
+
<p align="center">
|
25 |
+
<a href="https://tencentarc.github.io/BrushNet/">Project Page</a> |
|
26 |
+
<a href="https://github.com/TencentARC/BrushNet">Code</a> |
|
27 |
+
<a href="https://arxiv.org/abs/2403.06976">Arxiv</a> |
|
28 |
+
<a href="https://forms.gle/9TgMZ8tm49UYsZ9s5">Data</a> |
|
29 |
+
<a href="https://drive.google.com/file/d/1IkEBWcd2Fui2WHcckap4QFPcCI0gkHBh/view">Video</a> |
|
30 |
+
</p>
|
31 |
+
|
32 |
+
|
33 |
+
## 🤝🏼 Cite Us
|
34 |
+
|
35 |
+
```
|
36 |
+
@misc{ju2024brushnet,
|
37 |
+
title={BrushNet: A Plug-and-Play Image Inpainting Model with Decomposed Dual-Branch Diffusion},
|
38 |
+
author={Xuan Ju and Xian Liu and Xintao Wang and Yuxuan Bian and Ying Shan and Qiang Xu},
|
39 |
+
year={2024},
|
40 |
+
eprint={2403.06976},
|
41 |
+
archivePrefix={arXiv},
|
42 |
+
primaryClass={cs.CV}
|
43 |
+
}
|
44 |
+
```
|
45 |
+
|
46 |
+
|
47 |
+
## 💖 Acknowledgement
|
48 |
+
<span id="acknowledgement"></span>
|
49 |
+
|
50 |
+
Our code is modified based on [diffusers](https://github.com/huggingface/diffusers), thanks to all the contributors!
|
app.py
ADDED
@@ -0,0 +1,341 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
##!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import os
|
4 |
+
|
5 |
+
# print("Installing correct gradio version...")
|
6 |
+
# os.system("pip uninstall -y gradio")
|
7 |
+
# os.system("pip install gradio==3.50.0")
|
8 |
+
# print("Installing Finished!")
|
9 |
+
|
10 |
+
##!/usr/bin/python3
|
11 |
+
# -*- coding: utf-8 -*-
|
12 |
+
import gradio as gr
|
13 |
+
import os
|
14 |
+
import cv2
|
15 |
+
from PIL import Image
|
16 |
+
import numpy as np
|
17 |
+
from segment_anything import SamPredictor, sam_model_registry
|
18 |
+
import torch
|
19 |
+
from diffusers import StableDiffusionBrushNetPipeline, BrushNetModel, UniPCMultistepScheduler
|
20 |
+
import random
|
21 |
+
|
22 |
+
mobile_sam = sam_model_registry['vit_h'](checkpoint='data/ckpt/sam_vit_h_4b8939.pth').to("cuda")
|
23 |
+
mobile_sam.eval()
|
24 |
+
mobile_predictor = SamPredictor(mobile_sam)
|
25 |
+
colors = [(255, 0, 0), (0, 255, 0)]
|
26 |
+
markers = [1, 5]
|
27 |
+
|
28 |
+
# - - - - - examples - - - - - #
|
29 |
+
image_examples = [
|
30 |
+
["examples/brushnet/src/test_image.jpg", "A beautiful cake on the table", "examples/brushnet/src/test_mask.jpg", 0, [], [Image.open("examples/brushnet/src/test_result.png")]],
|
31 |
+
["examples/brushnet/src/example_1.jpg", "A man in Chinese traditional clothes", "examples/brushnet/src/example_1_mask.jpg", 1, [], [Image.open("examples/brushnet/src/example_1_result.png")]],
|
32 |
+
["examples/brushnet/src/example_3.jpg", "a cut toy on the table", "examples/brushnet/src/example_3_mask.jpg", 2, [], [Image.open("examples/brushnet/src/example_3_result.png")]],
|
33 |
+
["examples/brushnet/src/example_4.jpeg", "a car driving in the wild", "examples/brushnet/src/example_4_mask.jpg", 3, [], [Image.open("examples/brushnet/src/example_4_result.png")]],
|
34 |
+
["examples/brushnet/src/example_5.jpg", "a charming woman wearing dress standing in the dark forest", "examples/brushnet/src/example_5_mask.jpg", 4, [], [Image.open("examples/brushnet/src/example_5_result.png")]],
|
35 |
+
]
|
36 |
+
|
37 |
+
|
38 |
+
# choose the base model here
|
39 |
+
# base_model_path = "data/ckpt/realisticVisionV60B1_v51VAE"
|
40 |
+
base_model_path = "runwayml/stable-diffusion-v1-5"
|
41 |
+
|
42 |
+
# input brushnet ckpt path
|
43 |
+
brushnet_path = "data/ckpt/segmentation_mask_brushnet_ckpt"
|
44 |
+
|
45 |
+
brushnet = BrushNetModel.from_pretrained(brushnet_path, torch_dtype=torch.float16,safety_checker=None)
|
46 |
+
pipe = StableDiffusionBrushNetPipeline.from_pretrained(
|
47 |
+
base_model_path, brushnet=brushnet, torch_dtype=torch.float16, low_cpu_mem_usage=False,safety_checker=None
|
48 |
+
)
|
49 |
+
|
50 |
+
# speed up diffusion process with faster scheduler and memory optimization
|
51 |
+
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
52 |
+
# remove following line if xformers is not installed or when using Torch 2.0.
|
53 |
+
# pipe.enable_xformers_memory_efficient_attention()
|
54 |
+
# memory optimization.
|
55 |
+
pipe.enable_model_cpu_offload()
|
56 |
+
|
57 |
+
def resize_image(input_image, resolution):
|
58 |
+
H, W, C = input_image.shape
|
59 |
+
H = float(H)
|
60 |
+
W = float(W)
|
61 |
+
k = float(resolution) / min(H, W)
|
62 |
+
H *= k
|
63 |
+
W *= k
|
64 |
+
H = int(np.round(H / 64.0)) * 64
|
65 |
+
W = int(np.round(W / 64.0)) * 64
|
66 |
+
img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA)
|
67 |
+
return img
|
68 |
+
|
69 |
+
|
70 |
+
def process(input_image,
|
71 |
+
original_image,
|
72 |
+
original_mask,
|
73 |
+
input_mask,
|
74 |
+
selected_points,
|
75 |
+
prompt,
|
76 |
+
negative_prompt,
|
77 |
+
blended,
|
78 |
+
invert_mask,
|
79 |
+
control_strength,
|
80 |
+
seed,
|
81 |
+
randomize_seed,
|
82 |
+
guidance_scale,
|
83 |
+
num_inference_steps):
|
84 |
+
if original_image is None:
|
85 |
+
raise gr.Error('Please upload the input image')
|
86 |
+
if (original_mask is None or len(selected_points)==0) and input_mask is None:
|
87 |
+
raise gr.Error("Please click the region where you hope unchanged/changed, or upload a white-black Mask image")
|
88 |
+
|
89 |
+
# load example image
|
90 |
+
if isinstance(original_image, int):
|
91 |
+
image_name = image_examples[original_image][0]
|
92 |
+
original_image = cv2.imread(image_name)
|
93 |
+
original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB)
|
94 |
+
|
95 |
+
if input_mask is not None:
|
96 |
+
H,W=original_image.shape[:2]
|
97 |
+
original_mask = cv2.resize(input_mask, (W, H))
|
98 |
+
else:
|
99 |
+
original_mask = np.clip(255 - original_mask, 0, 255).astype(np.uint8)
|
100 |
+
|
101 |
+
if invert_mask:
|
102 |
+
original_mask=255-original_mask
|
103 |
+
|
104 |
+
mask = 1.*(original_mask.sum(-1)>255)[:,:,np.newaxis]
|
105 |
+
masked_image = original_image * (1-mask)
|
106 |
+
|
107 |
+
init_image = Image.fromarray(masked_image.astype(np.uint8)).convert("RGB")
|
108 |
+
mask_image = Image.fromarray(original_mask.astype(np.uint8)).convert("RGB")
|
109 |
+
mask_image.save("./mask.png")
|
110 |
+
|
111 |
+
generator = torch.Generator("cuda").manual_seed(random.randint(0,2147483647) if randomize_seed else seed)
|
112 |
+
image_num = 3
|
113 |
+
image = pipe(
|
114 |
+
[prompt]*image_num,
|
115 |
+
init_image,
|
116 |
+
mask_image,
|
117 |
+
num_inference_steps=num_inference_steps,
|
118 |
+
guidance_scale=guidance_scale,
|
119 |
+
generator=generator,
|
120 |
+
brushnet_conditioning_scale=float(control_strength),
|
121 |
+
negative_prompt=[negative_prompt]*image_num,
|
122 |
+
).images
|
123 |
+
|
124 |
+
if blended:
|
125 |
+
if control_strength<1.0:
|
126 |
+
raise gr.Error('Using blurred blending with control strength less than 1.0 is not allowed')
|
127 |
+
blended_image=[]
|
128 |
+
# blur, you can adjust the parameters for better performance
|
129 |
+
mask_blurred = cv2.GaussianBlur(mask*255, (21, 21), 0)/255
|
130 |
+
mask_blurred = mask_blurred[:,:,np.newaxis]
|
131 |
+
mask = 1-(1-mask) * (1-mask_blurred)
|
132 |
+
for image_i in image:
|
133 |
+
image_np=np.array(image_i)
|
134 |
+
image_pasted=original_image * (1-mask) + image_np*mask
|
135 |
+
|
136 |
+
image_pasted=image_pasted.astype(image_np.dtype)
|
137 |
+
blended_image.append(Image.fromarray(image_pasted))
|
138 |
+
|
139 |
+
image=blended_image
|
140 |
+
|
141 |
+
return image
|
142 |
+
|
143 |
+
block = gr.Blocks(
|
144 |
+
theme=gr.themes.Soft(
|
145 |
+
radius_size=gr.themes.sizes.radius_none,
|
146 |
+
text_size=gr.themes.sizes.text_md
|
147 |
+
)
|
148 |
+
).queue()
|
149 |
+
with block:
|
150 |
+
with gr.Row():
|
151 |
+
with gr.Column():
|
152 |
+
|
153 |
+
gr.HTML(f"""
|
154 |
+
<div style="text-align: center;">
|
155 |
+
<h1>BrushNet: A Plug-and-Play Image Inpainting Model with Decomposed Dual-Branch Diffusion</h1>
|
156 |
+
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
|
157 |
+
<a href=""></a>
|
158 |
+
<a href='https://tencentarc.github.io/BrushNet/'><img src='https://img.shields.io/badge/Project_Page-BrushNet-green' alt='Project Page'></a>
|
159 |
+
<a href='https://arxiv.org/abs/2403.06976'><img src='https://img.shields.io/badge/Paper-Arxiv-blue'></a>
|
160 |
+
</div>
|
161 |
+
</br>
|
162 |
+
</div>
|
163 |
+
""")
|
164 |
+
|
165 |
+
|
166 |
+
with gr.Accordion(label="🧭 Instructions:", open=True, elem_id="accordion"):
|
167 |
+
with gr.Row(equal_height=True):
|
168 |
+
gr.Markdown("""
|
169 |
+
- ⭐️ <b>step1: </b>Upload or select one image from Example
|
170 |
+
- ⭐️ <b>step2: </b>Click on Input-image to select the object to be retained (or upload a white-black Mask image, in which white color indicates the region you want to keep unchanged). You can tick the 'Invert Mask' box to switch region unchanged and change.
|
171 |
+
- ⭐️ <b>step3: </b>Input prompt for generating new contents
|
172 |
+
- ⭐️ <b>step4: </b>Click Run button
|
173 |
+
""")
|
174 |
+
with gr.Row():
|
175 |
+
with gr.Column():
|
176 |
+
with gr.Column(elem_id="Input"):
|
177 |
+
with gr.Row():
|
178 |
+
with gr.Tabs(elem_classes=["feedback"]):
|
179 |
+
with gr.TabItem("Input Image"):
|
180 |
+
input_image = gr.Image(type="numpy", label="input",scale=2, height=640)
|
181 |
+
original_image = gr.State(value=None,label="index")
|
182 |
+
original_mask = gr.State(value=None)
|
183 |
+
selected_points = gr.State([],label="select points")
|
184 |
+
with gr.Row(elem_id="Seg"):
|
185 |
+
radio = gr.Radio(['foreground', 'background'], label='Click to seg: ', value='foreground',scale=2)
|
186 |
+
undo_button = gr.Button('Undo seg', elem_id="btnSEG",scale=1)
|
187 |
+
prompt = gr.Textbox(label="Prompt", placeholder="Please input your prompt",value='',lines=1)
|
188 |
+
negative_prompt = gr.Text(
|
189 |
+
label="Negative Prompt",
|
190 |
+
max_lines=5,
|
191 |
+
placeholder="Please input your negative prompt",
|
192 |
+
value='ugly, low quality',lines=1
|
193 |
+
)
|
194 |
+
with gr.Group():
|
195 |
+
with gr.Row():
|
196 |
+
blending = gr.Checkbox(label="Blurred Blending", value=False)
|
197 |
+
invert_mask = gr.Checkbox(label="Invert Mask", value=True)
|
198 |
+
run_button = gr.Button("Run",elem_id="btn")
|
199 |
+
|
200 |
+
with gr.Accordion("More input params (highly-recommended)", open=False, elem_id="accordion1"):
|
201 |
+
control_strength = gr.Slider(
|
202 |
+
label="Control Strength: ", show_label=True, minimum=0, maximum=1.1, value=1, step=0.01
|
203 |
+
)
|
204 |
+
with gr.Group():
|
205 |
+
seed = gr.Slider(
|
206 |
+
label="Seed: ", minimum=0, maximum=2147483647, step=1, value=551793204
|
207 |
+
)
|
208 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=False)
|
209 |
+
|
210 |
+
with gr.Group():
|
211 |
+
with gr.Row():
|
212 |
+
guidance_scale = gr.Slider(
|
213 |
+
label="Guidance scale",
|
214 |
+
minimum=1,
|
215 |
+
maximum=12,
|
216 |
+
step=0.1,
|
217 |
+
value=12,
|
218 |
+
)
|
219 |
+
num_inference_steps = gr.Slider(
|
220 |
+
label="Number of inference steps",
|
221 |
+
minimum=1,
|
222 |
+
maximum=50,
|
223 |
+
step=1,
|
224 |
+
value=50,
|
225 |
+
)
|
226 |
+
with gr.Row(elem_id="Image"):
|
227 |
+
with gr.Tabs(elem_classes=["feedback1"]):
|
228 |
+
with gr.TabItem("User-specified Mask Image (Optional)"):
|
229 |
+
input_mask = gr.Image(type="numpy", label="Mask Image", height=640)
|
230 |
+
|
231 |
+
with gr.Column():
|
232 |
+
with gr.Tabs(elem_classes=["feedback"]):
|
233 |
+
with gr.TabItem("Outputs"):
|
234 |
+
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", preview=True)
|
235 |
+
with gr.Row():
|
236 |
+
def process_example(input_image, prompt, input_mask, original_image, selected_points,result_gallery): #
|
237 |
+
return input_image, prompt, input_mask, original_image, [], result_gallery
|
238 |
+
example = gr.Examples(
|
239 |
+
label="Input Example",
|
240 |
+
examples=image_examples,
|
241 |
+
inputs=[input_image, prompt, input_mask, original_image, selected_points,result_gallery],
|
242 |
+
outputs=[input_image, prompt, input_mask, original_image, selected_points],
|
243 |
+
fn=process_example,
|
244 |
+
run_on_click=True,
|
245 |
+
examples_per_page=10
|
246 |
+
)
|
247 |
+
|
248 |
+
# once user upload an image, the original image is stored in `original_image`
|
249 |
+
def store_img(img):
|
250 |
+
# image upload is too slow
|
251 |
+
if min(img.shape[0], img.shape[1]) > 512:
|
252 |
+
img = resize_image(img, 512)
|
253 |
+
if max(img.shape[0], img.shape[1])*1.0/min(img.shape[0], img.shape[1])>2.0:
|
254 |
+
raise gr.Error('image aspect ratio cannot be larger than 2.0')
|
255 |
+
return img, img, [], None # when new image is uploaded, `selected_points` should be empty
|
256 |
+
|
257 |
+
input_image.upload(
|
258 |
+
store_img,
|
259 |
+
[input_image],
|
260 |
+
[input_image, original_image, selected_points]
|
261 |
+
)
|
262 |
+
|
263 |
+
# user click the image to get points, and show the points on the image
|
264 |
+
def segmentation(img, sel_pix):
|
265 |
+
# online show seg mask
|
266 |
+
points = []
|
267 |
+
labels = []
|
268 |
+
for p, l in sel_pix:
|
269 |
+
points.append(p)
|
270 |
+
labels.append(l)
|
271 |
+
mobile_predictor.set_image(img if isinstance(img, np.ndarray) else np.array(img))
|
272 |
+
with torch.no_grad():
|
273 |
+
masks, _, _ = mobile_predictor.predict(point_coords=np.array(points), point_labels=np.array(labels), multimask_output=False)
|
274 |
+
|
275 |
+
output_mask = np.ones((masks.shape[1], masks.shape[2], 3))*255
|
276 |
+
for i in range(3):
|
277 |
+
output_mask[masks[0] == True, i] = 0.0
|
278 |
+
|
279 |
+
mask_all = np.ones((masks.shape[1], masks.shape[2], 3))
|
280 |
+
color_mask = np.random.random((1, 3)).tolist()[0]
|
281 |
+
for i in range(3):
|
282 |
+
mask_all[masks[0] == True, i] = color_mask[i]
|
283 |
+
masked_img = img / 255 * 0.3 + mask_all * 0.7
|
284 |
+
masked_img = masked_img*255
|
285 |
+
## draw points
|
286 |
+
for point, label in sel_pix:
|
287 |
+
cv2.drawMarker(masked_img, point, colors[label], markerType=markers[label], markerSize=20, thickness=5)
|
288 |
+
return masked_img, output_mask
|
289 |
+
|
290 |
+
def get_point(img, sel_pix, point_type, evt: gr.SelectData):
|
291 |
+
if point_type == 'foreground':
|
292 |
+
sel_pix.append((evt.index, 1)) # append the foreground_point
|
293 |
+
elif point_type == 'background':
|
294 |
+
sel_pix.append((evt.index, 0)) # append the background_point
|
295 |
+
else:
|
296 |
+
sel_pix.append((evt.index, 1)) # default foreground_point
|
297 |
+
|
298 |
+
if isinstance(img, int):
|
299 |
+
image_name = image_examples[img][0]
|
300 |
+
img = cv2.imread(image_name)
|
301 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
302 |
+
|
303 |
+
# online show seg mask
|
304 |
+
masked_img, output_mask = segmentation(img, sel_pix)
|
305 |
+
return masked_img.astype(np.uint8), output_mask
|
306 |
+
|
307 |
+
input_image.select(
|
308 |
+
get_point,
|
309 |
+
[original_image, selected_points, radio],
|
310 |
+
[input_image, original_mask],
|
311 |
+
)
|
312 |
+
|
313 |
+
# undo the selected point
|
314 |
+
def undo_points(orig_img, sel_pix):
|
315 |
+
# draw points
|
316 |
+
output_mask = None
|
317 |
+
if len(sel_pix) != 0:
|
318 |
+
if isinstance(orig_img, int): # if orig_img is int, the image if select from examples
|
319 |
+
temp = cv2.imread(image_examples[orig_img][0])
|
320 |
+
temp = cv2.cvtColor(temp, cv2.COLOR_BGR2RGB)
|
321 |
+
else:
|
322 |
+
temp = orig_img.copy()
|
323 |
+
sel_pix.pop()
|
324 |
+
# online show seg mask
|
325 |
+
if len(sel_pix) !=0:
|
326 |
+
temp, output_mask = segmentation(temp, sel_pix)
|
327 |
+
return temp.astype(np.uint8), output_mask
|
328 |
+
else:
|
329 |
+
gr.Error("Nothing to Undo")
|
330 |
+
|
331 |
+
undo_button.click(
|
332 |
+
undo_points,
|
333 |
+
[original_image, selected_points],
|
334 |
+
[input_image, original_mask]
|
335 |
+
)
|
336 |
+
|
337 |
+
ips=[input_image, original_image, original_mask, input_mask, selected_points, prompt, negative_prompt, blending, invert_mask, control_strength, seed, randomize_seed, guidance_scale, num_inference_steps]
|
338 |
+
run_button.click(fn=process, inputs=ips, outputs=[result_gallery])
|
339 |
+
|
340 |
+
|
341 |
+
block.launch()
|
data/ckpt/realisticVisionV60B1_v51VAE/feature_extractor/preprocessor_config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"crop_size": {
|
3 |
+
"height": 224,
|
4 |
+
"width": 224
|
5 |
+
},
|
6 |
+
"do_center_crop": true,
|
7 |
+
"do_convert_rgb": true,
|
8 |
+
"do_normalize": true,
|
9 |
+
"do_rescale": true,
|
10 |
+
"do_resize": true,
|
11 |
+
"image_mean": [
|
12 |
+
0.48145466,
|
13 |
+
0.4578275,
|
14 |
+
0.40821073
|
15 |
+
],
|
16 |
+
"image_processor_type": "CLIPFeatureExtractor",
|
17 |
+
"image_std": [
|
18 |
+
0.26862954,
|
19 |
+
0.26130258,
|
20 |
+
0.27577711
|
21 |
+
],
|
22 |
+
"resample": 3,
|
23 |
+
"rescale_factor": 0.00392156862745098,
|
24 |
+
"size": {
|
25 |
+
"shortest_edge": 224
|
26 |
+
}
|
27 |
+
}
|
data/ckpt/realisticVisionV60B1_v51VAE/model_index.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "StableDiffusionPipeline",
|
3 |
+
"_diffusers_version": "0.26.0.dev0",
|
4 |
+
"feature_extractor": [
|
5 |
+
"transformers",
|
6 |
+
"CLIPFeatureExtractor"
|
7 |
+
],
|
8 |
+
"image_encoder": [
|
9 |
+
null,
|
10 |
+
null
|
11 |
+
],
|
12 |
+
"requires_safety_checker": true,
|
13 |
+
"safety_checker": [
|
14 |
+
"stable_diffusion",
|
15 |
+
"StableDiffusionSafetyChecker"
|
16 |
+
],
|
17 |
+
"scheduler": [
|
18 |
+
"diffusers",
|
19 |
+
"PNDMScheduler"
|
20 |
+
],
|
21 |
+
"text_encoder": [
|
22 |
+
"transformers",
|
23 |
+
"CLIPTextModel"
|
24 |
+
],
|
25 |
+
"tokenizer": [
|
26 |
+
"transformers",
|
27 |
+
"CLIPTokenizer"
|
28 |
+
],
|
29 |
+
"unet": [
|
30 |
+
"diffusers",
|
31 |
+
"UNet2DConditionModel"
|
32 |
+
],
|
33 |
+
"vae": [
|
34 |
+
"diffusers",
|
35 |
+
"AutoencoderKL"
|
36 |
+
]
|
37 |
+
}
|
data/ckpt/realisticVisionV60B1_v51VAE/safety_checker/config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "CompVis/stable-diffusion-safety-checker",
|
3 |
+
"architectures": [
|
4 |
+
"StableDiffusionSafetyChecker"
|
5 |
+
],
|
6 |
+
"initializer_factor": 1.0,
|
7 |
+
"logit_scale_init_value": 2.6592,
|
8 |
+
"model_type": "clip",
|
9 |
+
"projection_dim": 768,
|
10 |
+
"text_config": {
|
11 |
+
"dropout": 0.0,
|
12 |
+
"hidden_size": 768,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"model_type": "clip_text_model",
|
15 |
+
"num_attention_heads": 12
|
16 |
+
},
|
17 |
+
"torch_dtype": "float32",
|
18 |
+
"transformers_version": "4.37.2",
|
19 |
+
"vision_config": {
|
20 |
+
"dropout": 0.0,
|
21 |
+
"hidden_size": 1024,
|
22 |
+
"intermediate_size": 4096,
|
23 |
+
"model_type": "clip_vision_model",
|
24 |
+
"num_attention_heads": 16,
|
25 |
+
"num_hidden_layers": 24,
|
26 |
+
"patch_size": 14
|
27 |
+
}
|
28 |
+
}
|
data/ckpt/realisticVisionV60B1_v51VAE/safety_checker/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:afa7ebf10b23008ecbb81111e9cc8818443e1302a0defaa0a6cbd8cfe310b278
|
3 |
+
size 1216059369
|
data/ckpt/realisticVisionV60B1_v51VAE/scheduler/scheduler_config.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "PNDMScheduler",
|
3 |
+
"_diffusers_version": "0.26.0.dev0",
|
4 |
+
"beta_end": 0.012,
|
5 |
+
"beta_schedule": "scaled_linear",
|
6 |
+
"beta_start": 0.00085,
|
7 |
+
"clip_sample": false,
|
8 |
+
"num_train_timesteps": 1000,
|
9 |
+
"prediction_type": "epsilon",
|
10 |
+
"set_alpha_to_one": false,
|
11 |
+
"skip_prk_steps": true,
|
12 |
+
"steps_offset": 1,
|
13 |
+
"timestep_spacing": "leading",
|
14 |
+
"trained_betas": null
|
15 |
+
}
|
data/ckpt/realisticVisionV60B1_v51VAE/text_encoder/config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"CLIPTextModel"
|
4 |
+
],
|
5 |
+
"attention_dropout": 0.0,
|
6 |
+
"bos_token_id": 0,
|
7 |
+
"dropout": 0.0,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "quick_gelu",
|
10 |
+
"hidden_size": 768,
|
11 |
+
"initializer_factor": 1.0,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-05,
|
15 |
+
"max_position_embeddings": 77,
|
16 |
+
"model_type": "clip_text_model",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 1,
|
20 |
+
"projection_dim": 768,
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.37.2",
|
23 |
+
"vocab_size": 49408
|
24 |
+
}
|
data/ckpt/realisticVisionV60B1_v51VAE/text_encoder/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ccf6d26500a883b3e7227d2f10292bee7fe078f26cb1afef46eee26252805f0b
|
3 |
+
size 492304313
|
data/ckpt/realisticVisionV60B1_v51VAE/tokenizer/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data/ckpt/realisticVisionV60B1_v51VAE/tokenizer/special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|startoftext|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|endoftext|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<|endoftext|>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<|endoftext|>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
data/ckpt/realisticVisionV60B1_v51VAE/tokenizer/tokenizer_config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"49406": {
|
5 |
+
"content": "<|startoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": true,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"49407": {
|
13 |
+
"content": "<|endoftext|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
}
|
20 |
+
},
|
21 |
+
"bos_token": "<|startoftext|>",
|
22 |
+
"clean_up_tokenization_spaces": true,
|
23 |
+
"do_lower_case": true,
|
24 |
+
"eos_token": "<|endoftext|>",
|
25 |
+
"errors": "replace",
|
26 |
+
"model_max_length": 77,
|
27 |
+
"pad_token": "<|endoftext|>",
|
28 |
+
"tokenizer_class": "CLIPTokenizer",
|
29 |
+
"unk_token": "<|endoftext|>"
|
30 |
+
}
|
data/ckpt/realisticVisionV60B1_v51VAE/tokenizer/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data/ckpt/realisticVisionV60B1_v51VAE/unet/config.json
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "UNet2DConditionModel",
|
3 |
+
"_diffusers_version": "0.26.0.dev0",
|
4 |
+
"act_fn": "silu",
|
5 |
+
"addition_embed_type": null,
|
6 |
+
"addition_embed_type_num_heads": 64,
|
7 |
+
"addition_time_embed_dim": null,
|
8 |
+
"attention_head_dim": 8,
|
9 |
+
"attention_type": "default",
|
10 |
+
"block_out_channels": [
|
11 |
+
320,
|
12 |
+
640,
|
13 |
+
1280,
|
14 |
+
1280
|
15 |
+
],
|
16 |
+
"center_input_sample": false,
|
17 |
+
"class_embed_type": null,
|
18 |
+
"class_embeddings_concat": false,
|
19 |
+
"conv_in_kernel": 3,
|
20 |
+
"conv_out_kernel": 3,
|
21 |
+
"cross_attention_dim": 768,
|
22 |
+
"cross_attention_norm": null,
|
23 |
+
"down_block_types": [
|
24 |
+
"CrossAttnDownBlock2D",
|
25 |
+
"CrossAttnDownBlock2D",
|
26 |
+
"CrossAttnDownBlock2D",
|
27 |
+
"DownBlock2D"
|
28 |
+
],
|
29 |
+
"downsample_padding": 1,
|
30 |
+
"dropout": 0.0,
|
31 |
+
"dual_cross_attention": false,
|
32 |
+
"encoder_hid_dim": null,
|
33 |
+
"encoder_hid_dim_type": null,
|
34 |
+
"flip_sin_to_cos": true,
|
35 |
+
"freq_shift": 0,
|
36 |
+
"in_channels": 4,
|
37 |
+
"layers_per_block": 2,
|
38 |
+
"mid_block_only_cross_attention": null,
|
39 |
+
"mid_block_scale_factor": 1,
|
40 |
+
"mid_block_type": "UNetMidBlock2DCrossAttn",
|
41 |
+
"norm_eps": 1e-05,
|
42 |
+
"norm_num_groups": 32,
|
43 |
+
"num_attention_heads": null,
|
44 |
+
"num_class_embeds": null,
|
45 |
+
"only_cross_attention": false,
|
46 |
+
"out_channels": 4,
|
47 |
+
"projection_class_embeddings_input_dim": null,
|
48 |
+
"resnet_out_scale_factor": 1.0,
|
49 |
+
"resnet_skip_time_act": false,
|
50 |
+
"resnet_time_scale_shift": "default",
|
51 |
+
"reverse_transformer_layers_per_block": null,
|
52 |
+
"sample_size": 64,
|
53 |
+
"time_cond_proj_dim": null,
|
54 |
+
"time_embedding_act_fn": null,
|
55 |
+
"time_embedding_dim": null,
|
56 |
+
"time_embedding_type": "positional",
|
57 |
+
"timestep_post_act": null,
|
58 |
+
"transformer_layers_per_block": 1,
|
59 |
+
"up_block_types": [
|
60 |
+
"UpBlock2D",
|
61 |
+
"CrossAttnUpBlock2D",
|
62 |
+
"CrossAttnUpBlock2D",
|
63 |
+
"CrossAttnUpBlock2D"
|
64 |
+
],
|
65 |
+
"upcast_attention": false,
|
66 |
+
"use_linear_projection": false
|
67 |
+
}
|
data/ckpt/realisticVisionV60B1_v51VAE/unet/diffusion_pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c8dac118ff5749ca65298f1546ec23d3fec876cded41f9559fcd863e30d969f4
|
3 |
+
size 3438354725
|
data/ckpt/realisticVisionV60B1_v51VAE/vae/config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "AutoencoderKL",
|
3 |
+
"_diffusers_version": "0.26.0.dev0",
|
4 |
+
"act_fn": "silu",
|
5 |
+
"block_out_channels": [
|
6 |
+
128,
|
7 |
+
256,
|
8 |
+
512,
|
9 |
+
512
|
10 |
+
],
|
11 |
+
"down_block_types": [
|
12 |
+
"DownEncoderBlock2D",
|
13 |
+
"DownEncoderBlock2D",
|
14 |
+
"DownEncoderBlock2D",
|
15 |
+
"DownEncoderBlock2D"
|
16 |
+
],
|
17 |
+
"force_upcast": true,
|
18 |
+
"in_channels": 3,
|
19 |
+
"latent_channels": 4,
|
20 |
+
"layers_per_block": 2,
|
21 |
+
"norm_num_groups": 32,
|
22 |
+
"out_channels": 3,
|
23 |
+
"sample_size": 512,
|
24 |
+
"scaling_factor": 0.18215,
|
25 |
+
"up_block_types": [
|
26 |
+
"UpDecoderBlock2D",
|
27 |
+
"UpDecoderBlock2D",
|
28 |
+
"UpDecoderBlock2D",
|
29 |
+
"UpDecoderBlock2D"
|
30 |
+
]
|
31 |
+
}
|
data/ckpt/realisticVisionV60B1_v51VAE/vae/diffusion_pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9428a7d3cab924439bbba9f2c3e5128d466f9dffd9c12ed7098ae288a5bfe8bd
|
3 |
+
size 334707473
|
data/ckpt/sam_vit_h_4b8939.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a7bf3b02f3ebf1267aba913ff637d9a2d5c33d3173bb679e46d9f338c26f262e
|
3 |
+
size 2564550879
|
data/ckpt/segmentation_mask_brushnet_ckpt/config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "BrushNetModel",
|
3 |
+
"_diffusers_version": "0.27.0.dev0",
|
4 |
+
"_name_or_path": "runs/logs/brushnet_segmask/checkpoint-550000",
|
5 |
+
"act_fn": "silu",
|
6 |
+
"addition_embed_type": null,
|
7 |
+
"addition_embed_type_num_heads": 64,
|
8 |
+
"addition_time_embed_dim": null,
|
9 |
+
"attention_head_dim": 8,
|
10 |
+
"block_out_channels": [
|
11 |
+
320,
|
12 |
+
640,
|
13 |
+
1280,
|
14 |
+
1280
|
15 |
+
],
|
16 |
+
"brushnet_conditioning_channel_order": "rgb",
|
17 |
+
"class_embed_type": null,
|
18 |
+
"conditioning_channels": 5,
|
19 |
+
"conditioning_embedding_out_channels": [
|
20 |
+
16,
|
21 |
+
32,
|
22 |
+
96,
|
23 |
+
256
|
24 |
+
],
|
25 |
+
"cross_attention_dim": 768,
|
26 |
+
"down_block_types": [
|
27 |
+
"DownBlock2D",
|
28 |
+
"DownBlock2D",
|
29 |
+
"DownBlock2D",
|
30 |
+
"DownBlock2D"
|
31 |
+
],
|
32 |
+
"downsample_padding": 1,
|
33 |
+
"encoder_hid_dim": null,
|
34 |
+
"encoder_hid_dim_type": null,
|
35 |
+
"flip_sin_to_cos": true,
|
36 |
+
"freq_shift": 0,
|
37 |
+
"global_pool_conditions": false,
|
38 |
+
"in_channels": 4,
|
39 |
+
"layers_per_block": 2,
|
40 |
+
"mid_block_scale_factor": 1,
|
41 |
+
"mid_block_type": "MidBlock2D",
|
42 |
+
"norm_eps": 1e-05,
|
43 |
+
"norm_num_groups": 32,
|
44 |
+
"num_attention_heads": null,
|
45 |
+
"num_class_embeds": null,
|
46 |
+
"only_cross_attention": false,
|
47 |
+
"projection_class_embeddings_input_dim": null,
|
48 |
+
"resnet_time_scale_shift": "default",
|
49 |
+
"transformer_layers_per_block": 1,
|
50 |
+
"up_block_types": [
|
51 |
+
"UpBlock2D",
|
52 |
+
"UpBlock2D",
|
53 |
+
"UpBlock2D",
|
54 |
+
"UpBlock2D"
|
55 |
+
],
|
56 |
+
"upcast_attention": false,
|
57 |
+
"use_linear_projection": false
|
58 |
+
}
|
data/ckpt/segmentation_mask_brushnet_ckpt/diffusion_pytorch_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:066793867083310c25b0d57d300b1ecdc02cb708a155060f020be64afb2ae9c3
|
3 |
+
size 2475354520
|
examples/brushnet/src/example_1.jpg
ADDED
![]() |
examples/brushnet/src/example_1_mask.jpg
ADDED
![]() |
examples/brushnet/src/example_1_result.png
ADDED
![]() |
examples/brushnet/src/example_3.jpg
ADDED
![]() |
examples/brushnet/src/example_3_mask.jpg
ADDED
![]() |
examples/brushnet/src/example_3_result.png
ADDED
![]() |
examples/brushnet/src/example_4.jpeg
ADDED
![]() |
examples/brushnet/src/example_4_mask.jpg
ADDED
![]() |
examples/brushnet/src/example_4_result.png
ADDED
![]() |
examples/brushnet/src/example_5.jpg
ADDED
![]() |
examples/brushnet/src/example_5_mask.jpg
ADDED
![]() |
examples/brushnet/src/example_5_result.png
ADDED
![]() |
examples/brushnet/src/test_image.jpg
ADDED
![]() |
examples/brushnet/src/test_mask.jpg
ADDED
![]() |
examples/brushnet/src/test_result.png
ADDED
![]() |
mask.png
ADDED
![]() |
requirements.txt
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
torchvision
|
3 |
+
torchaudio
|
4 |
+
transformers>=4.25.1
|
5 |
+
gradio==3.50.0
|
6 |
+
ftfy
|
7 |
+
tensorboard
|
8 |
+
datasets
|
9 |
+
Pillow==9.5.0
|
10 |
+
opencv-python
|
11 |
+
imgaug
|
12 |
+
accelerate==0.20.3
|
13 |
+
image-reward
|
14 |
+
hpsv2
|
15 |
+
torchmetrics
|
16 |
+
open-clip-torch
|
17 |
+
clip
|
18 |
+
segment_anything
|
19 |
+
git+https://github.com/TencentARC/BrushNet.git
|