detr_finetuned_cppe5

This model is a fine-tuned version of microsoft/conditional-detr-resnet-50 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.5826
  • Map: 0.0003
  • Map 50: 0.0007
  • Map 75: 0.0
  • Map Small: 0.0014
  • Map Medium: 0.0001
  • Map Large: 0.0
  • Mar 1: 0.0
  • Mar 10: 0.0021
  • Mar 100: 0.0075
  • Mar Small: 0.0118
  • Mar Medium: 0.0062
  • Mar Large: 0.01
  • Map Coverall: 0.0
  • Mar 100 Coverall: 0.0
  • Map Face Shield: 0.0
  • Mar 100 Face Shield: 0.0
  • Map Gloves: 0.0015
  • Mar 100 Gloves: 0.0375
  • Map Goggles: 0.0
  • Mar 100 Goggles: 0.0
  • Map Mask: 0.0
  • Mar 100 Mask: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Map Map 50 Map 75 Map Small Map Medium Map Large Mar 1 Mar 10 Mar 100 Mar Small Mar Medium Mar Large Map Coverall Mar 100 Coverall Map Face Shield Mar 100 Face Shield Map Gloves Mar 100 Gloves Map Goggles Mar 100 Goggles Map Mask Mar 100 Mask
No log 1.0 107 3.5856 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0003 0.0061 0.0006 0.0065 0.0157 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0307
No log 2.0 214 3.7297 0.0 0.0001 0.0 0.0 0.0 0.0 0.0 0.0002 0.0078 0.0097 0.011 0.0017 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0001 0.0391
No log 3.0 321 3.8304 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0044 0.0 0.0032 0.0149 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0222
No log 4.0 428 3.6958 0.0 0.0001 0.0 0.0 0.0 0.0 0.0002 0.0004 0.0071 0.0059 0.0105 0.0047 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0001 0.0356
2.8722 5.0 535 4.0271 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0014 0.0 0.0017 0.0034 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0071
2.8722 6.0 642 3.6288 0.0 0.0001 0.0 0.0001 0.0 0.0 0.0 0.001 0.0125 0.01 0.0159 0.014 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0002 0.0627
2.8722 7.0 749 3.6254 0.0 0.0001 0.0 0.0001 0.0 0.0001 0.0 0.0005 0.0063 0.0105 0.0035 0.0132 0.0 0.0 0.0 0.0 0.0001 0.0312 0.0 0.0 0.0 0.0
2.8722 8.0 856 3.8407 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0003 0.0016 0.0 0.0017 0.0043 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.008
2.8722 9.0 963 3.6509 0.0 0.0002 0.0 0.0001 0.0 0.0 0.0 0.0009 0.0066 0.0072 0.007 0.0059 0.0 0.0 0.0 0.0 0.0002 0.033 0.0 0.0 0.0 0.0
2.5968 10.0 1070 3.6992 0.0 0.0 0.0 0.0 0.0001 0.0 0.0 0.0003 0.0033 0.0033 0.0041 0.0014 0.0 0.0 0.0 0.0 0.0 0.0165 0.0 0.0 0.0 0.0
2.5968 11.0 1177 3.6423 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0012 0.006 0.0006 0.0097 0.0085 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0001 0.0298
2.5968 12.0 1284 3.5987 0.0005 0.0023 0.0 0.0019 0.0001 0.0 0.0002 0.0009 0.0077 0.0092 0.0066 0.0114 0.0 0.0 0.0 0.0 0.0024 0.0384 0.0 0.0 0.0 0.0
2.5968 13.0 1391 3.6200 0.0 0.0001 0.0 0.0005 0.0 0.0 0.0 0.0028 0.0076 0.0099 0.0077 0.0068 0.0 0.0 0.0 0.0 0.0002 0.0379 0.0 0.0 0.0 0.0
2.5968 14.0 1498 3.7723 0.0 0.0001 0.0 0.0 0.0001 0.0 0.0003 0.0006 0.0044 0.0007 0.0044 0.0077 0.0 0.0 0.0 0.0 0.0001 0.0219 0.0 0.0 0.0 0.0
2.5557 15.0 1605 3.6236 0.0 0.0001 0.0 0.0 0.0 0.0 0.0003 0.0011 0.0081 0.0021 0.0099 0.0162 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0001 0.0404
2.5557 16.0 1712 3.6496 0.0001 0.0002 0.0 0.0008 0.0003 0.0 0.0004 0.0017 0.0065 0.0059 0.0066 0.0077 0.0 0.0 0.0 0.0 0.0003 0.0326 0.0 0.0 0.0 0.0
2.5557 17.0 1819 3.6098 0.0 0.0001 0.0 0.0 0.0001 0.0 0.0 0.0009 0.0046 0.0007 0.0039 0.0105 0.0 0.0 0.0 0.0 0.0001 0.0232 0.0 0.0 0.0 0.0
2.5557 18.0 1926 3.6017 0.0001 0.0003 0.0 0.0 0.0005 0.0 0.0004 0.0015 0.0061 0.0026 0.0069 0.0068 0.0 0.0 0.0 0.0 0.0003 0.0304 0.0 0.0 0.0 0.0
2.5084 19.0 2033 3.5866 0.0003 0.0006 0.0004 0.0045 0.0002 0.0 0.0013 0.0029 0.0078 0.0066 0.0079 0.0095 0.0 0.0 0.0 0.0 0.0014 0.0388 0.0 0.0 0.0 0.0
2.5084 20.0 2140 3.6129 0.0002 0.0022 0.0 0.0008 0.0001 0.0 0.0001 0.0015 0.0073 0.0066 0.0069 0.0105 0.0 0.0 0.0 0.0 0.0012 0.0366 0.0 0.0 0.0 0.0
2.5084 21.0 2247 3.5974 0.0004 0.001 0.0 0.002 0.0002 0.0 0.0004 0.0033 0.0083 0.0099 0.0086 0.0077 0.0 0.0 0.0 0.0 0.002 0.0415 0.0 0.0 0.0 0.0
2.5084 22.0 2354 3.5810 0.0 0.0002 0.0 0.0001 0.0001 0.0 0.0 0.0012 0.0075 0.0072 0.0069 0.0109 0.0 0.0 0.0 0.0 0.0002 0.0375 0.0 0.0 0.0 0.0
2.5084 23.0 2461 3.6132 0.0005 0.0013 0.0 0.0016 0.0002 0.0 0.0 0.0028 0.0077 0.0079 0.0079 0.0082 0.0 0.0 0.0 0.0 0.0023 0.0384 0.0 0.0 0.0 0.0
2.4812 24.0 2568 3.5863 0.0002 0.0022 0.0 0.0009 0.0001 0.0 0.0001 0.0018 0.0069 0.0079 0.007 0.0068 0.0 0.0 0.0 0.0 0.0012 0.0344 0.0 0.0 0.0 0.0
2.4812 25.0 2675 3.6469 0.0002 0.0022 0.0 0.0008 0.0001 0.0 0.0001 0.0018 0.007 0.0059 0.0076 0.0068 0.0 0.0 0.0 0.0 0.0012 0.0348 0.0 0.0 0.0 0.0
2.4812 26.0 2782 3.5896 0.0001 0.0006 0.0 0.0004 0.0001 0.0 0.0 0.0017 0.007 0.0099 0.0063 0.0082 0.0 0.0 0.0 0.0 0.0004 0.0348 0.0 0.0 0.0 0.0
2.4812 27.0 2889 3.5994 0.0001 0.0005 0.0 0.0007 0.0001 0.0 0.0004 0.0024 0.0074 0.0112 0.0066 0.0086 0.0 0.0 0.0 0.0 0.0006 0.0371 0.0 0.0 0.0 0.0
2.4812 28.0 2996 3.5806 0.0002 0.0006 0.0 0.0014 0.0001 0.0 0.0 0.0019 0.0072 0.0112 0.0058 0.0105 0.0 0.0 0.0 0.0 0.0012 0.0362 0.0 0.0 0.0 0.0
2.4512 29.0 3103 3.5821 0.0002 0.0006 0.0 0.0014 0.0001 0.0 0.0004 0.0023 0.0075 0.0118 0.0062 0.01 0.0 0.0 0.0 0.0 0.0011 0.0375 0.0 0.0 0.0 0.0
2.4512 30.0 3210 3.5826 0.0003 0.0007 0.0 0.0014 0.0001 0.0 0.0 0.0021 0.0075 0.0118 0.0062 0.01 0.0 0.0 0.0 0.0 0.0015 0.0375 0.0 0.0 0.0 0.0

Framework versions

  • Transformers 4.55.4
  • Pytorch 2.8.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.21.4
Downloads last month
-
Safetensors
Model size
43.5M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for amSOwO/detr_finetuned_cppe5

Finetuned
(83)
this model