detr_finetuned_cppe5
This model is a fine-tuned version of microsoft/conditional-detr-resnet-50 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 3.5826
- Map: 0.0003
- Map 50: 0.0007
- Map 75: 0.0
- Map Small: 0.0014
- Map Medium: 0.0001
- Map Large: 0.0
- Mar 1: 0.0
- Mar 10: 0.0021
- Mar 100: 0.0075
- Mar Small: 0.0118
- Mar Medium: 0.0062
- Mar Large: 0.01
- Map Coverall: 0.0
- Mar 100 Coverall: 0.0
- Map Face Shield: 0.0
- Mar 100 Face Shield: 0.0
- Map Gloves: 0.0015
- Mar 100 Gloves: 0.0375
- Map Goggles: 0.0
- Mar 100 Goggles: 0.0
- Map Mask: 0.0
- Mar 100 Mask: 0.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Coverall | Mar 100 Coverall | Map Face Shield | Mar 100 Face Shield | Map Gloves | Mar 100 Gloves | Map Goggles | Mar 100 Goggles | Map Mask | Mar 100 Mask |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 107 | 3.5856 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0003 | 0.0061 | 0.0006 | 0.0065 | 0.0157 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0307 |
No log | 2.0 | 214 | 3.7297 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0002 | 0.0078 | 0.0097 | 0.011 | 0.0017 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0001 | 0.0391 |
No log | 3.0 | 321 | 3.8304 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0044 | 0.0 | 0.0032 | 0.0149 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0222 |
No log | 4.0 | 428 | 3.6958 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0002 | 0.0004 | 0.0071 | 0.0059 | 0.0105 | 0.0047 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0001 | 0.0356 |
2.8722 | 5.0 | 535 | 4.0271 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0014 | 0.0 | 0.0017 | 0.0034 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0071 |
2.8722 | 6.0 | 642 | 3.6288 | 0.0 | 0.0001 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.0 | 0.001 | 0.0125 | 0.01 | 0.0159 | 0.014 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0002 | 0.0627 |
2.8722 | 7.0 | 749 | 3.6254 | 0.0 | 0.0001 | 0.0 | 0.0001 | 0.0 | 0.0001 | 0.0 | 0.0005 | 0.0063 | 0.0105 | 0.0035 | 0.0132 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0001 | 0.0312 | 0.0 | 0.0 | 0.0 | 0.0 |
2.8722 | 8.0 | 856 | 3.8407 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0003 | 0.0016 | 0.0 | 0.0017 | 0.0043 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.008 |
2.8722 | 9.0 | 963 | 3.6509 | 0.0 | 0.0002 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.0 | 0.0009 | 0.0066 | 0.0072 | 0.007 | 0.0059 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0002 | 0.033 | 0.0 | 0.0 | 0.0 | 0.0 |
2.5968 | 10.0 | 1070 | 3.6992 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.0003 | 0.0033 | 0.0033 | 0.0041 | 0.0014 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0165 | 0.0 | 0.0 | 0.0 | 0.0 |
2.5968 | 11.0 | 1177 | 3.6423 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0012 | 0.006 | 0.0006 | 0.0097 | 0.0085 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0001 | 0.0298 |
2.5968 | 12.0 | 1284 | 3.5987 | 0.0005 | 0.0023 | 0.0 | 0.0019 | 0.0001 | 0.0 | 0.0002 | 0.0009 | 0.0077 | 0.0092 | 0.0066 | 0.0114 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0024 | 0.0384 | 0.0 | 0.0 | 0.0 | 0.0 |
2.5968 | 13.0 | 1391 | 3.6200 | 0.0 | 0.0001 | 0.0 | 0.0005 | 0.0 | 0.0 | 0.0 | 0.0028 | 0.0076 | 0.0099 | 0.0077 | 0.0068 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0002 | 0.0379 | 0.0 | 0.0 | 0.0 | 0.0 |
2.5968 | 14.0 | 1498 | 3.7723 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.0001 | 0.0 | 0.0003 | 0.0006 | 0.0044 | 0.0007 | 0.0044 | 0.0077 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0001 | 0.0219 | 0.0 | 0.0 | 0.0 | 0.0 |
2.5557 | 15.0 | 1605 | 3.6236 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0003 | 0.0011 | 0.0081 | 0.0021 | 0.0099 | 0.0162 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0001 | 0.0404 |
2.5557 | 16.0 | 1712 | 3.6496 | 0.0001 | 0.0002 | 0.0 | 0.0008 | 0.0003 | 0.0 | 0.0004 | 0.0017 | 0.0065 | 0.0059 | 0.0066 | 0.0077 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0003 | 0.0326 | 0.0 | 0.0 | 0.0 | 0.0 |
2.5557 | 17.0 | 1819 | 3.6098 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.0009 | 0.0046 | 0.0007 | 0.0039 | 0.0105 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0001 | 0.0232 | 0.0 | 0.0 | 0.0 | 0.0 |
2.5557 | 18.0 | 1926 | 3.6017 | 0.0001 | 0.0003 | 0.0 | 0.0 | 0.0005 | 0.0 | 0.0004 | 0.0015 | 0.0061 | 0.0026 | 0.0069 | 0.0068 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0003 | 0.0304 | 0.0 | 0.0 | 0.0 | 0.0 |
2.5084 | 19.0 | 2033 | 3.5866 | 0.0003 | 0.0006 | 0.0004 | 0.0045 | 0.0002 | 0.0 | 0.0013 | 0.0029 | 0.0078 | 0.0066 | 0.0079 | 0.0095 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0014 | 0.0388 | 0.0 | 0.0 | 0.0 | 0.0 |
2.5084 | 20.0 | 2140 | 3.6129 | 0.0002 | 0.0022 | 0.0 | 0.0008 | 0.0001 | 0.0 | 0.0001 | 0.0015 | 0.0073 | 0.0066 | 0.0069 | 0.0105 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0012 | 0.0366 | 0.0 | 0.0 | 0.0 | 0.0 |
2.5084 | 21.0 | 2247 | 3.5974 | 0.0004 | 0.001 | 0.0 | 0.002 | 0.0002 | 0.0 | 0.0004 | 0.0033 | 0.0083 | 0.0099 | 0.0086 | 0.0077 | 0.0 | 0.0 | 0.0 | 0.0 | 0.002 | 0.0415 | 0.0 | 0.0 | 0.0 | 0.0 |
2.5084 | 22.0 | 2354 | 3.5810 | 0.0 | 0.0002 | 0.0 | 0.0001 | 0.0001 | 0.0 | 0.0 | 0.0012 | 0.0075 | 0.0072 | 0.0069 | 0.0109 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0002 | 0.0375 | 0.0 | 0.0 | 0.0 | 0.0 |
2.5084 | 23.0 | 2461 | 3.6132 | 0.0005 | 0.0013 | 0.0 | 0.0016 | 0.0002 | 0.0 | 0.0 | 0.0028 | 0.0077 | 0.0079 | 0.0079 | 0.0082 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0023 | 0.0384 | 0.0 | 0.0 | 0.0 | 0.0 |
2.4812 | 24.0 | 2568 | 3.5863 | 0.0002 | 0.0022 | 0.0 | 0.0009 | 0.0001 | 0.0 | 0.0001 | 0.0018 | 0.0069 | 0.0079 | 0.007 | 0.0068 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0012 | 0.0344 | 0.0 | 0.0 | 0.0 | 0.0 |
2.4812 | 25.0 | 2675 | 3.6469 | 0.0002 | 0.0022 | 0.0 | 0.0008 | 0.0001 | 0.0 | 0.0001 | 0.0018 | 0.007 | 0.0059 | 0.0076 | 0.0068 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0012 | 0.0348 | 0.0 | 0.0 | 0.0 | 0.0 |
2.4812 | 26.0 | 2782 | 3.5896 | 0.0001 | 0.0006 | 0.0 | 0.0004 | 0.0001 | 0.0 | 0.0 | 0.0017 | 0.007 | 0.0099 | 0.0063 | 0.0082 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0004 | 0.0348 | 0.0 | 0.0 | 0.0 | 0.0 |
2.4812 | 27.0 | 2889 | 3.5994 | 0.0001 | 0.0005 | 0.0 | 0.0007 | 0.0001 | 0.0 | 0.0004 | 0.0024 | 0.0074 | 0.0112 | 0.0066 | 0.0086 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0006 | 0.0371 | 0.0 | 0.0 | 0.0 | 0.0 |
2.4812 | 28.0 | 2996 | 3.5806 | 0.0002 | 0.0006 | 0.0 | 0.0014 | 0.0001 | 0.0 | 0.0 | 0.0019 | 0.0072 | 0.0112 | 0.0058 | 0.0105 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0012 | 0.0362 | 0.0 | 0.0 | 0.0 | 0.0 |
2.4512 | 29.0 | 3103 | 3.5821 | 0.0002 | 0.0006 | 0.0 | 0.0014 | 0.0001 | 0.0 | 0.0004 | 0.0023 | 0.0075 | 0.0118 | 0.0062 | 0.01 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0011 | 0.0375 | 0.0 | 0.0 | 0.0 | 0.0 |
2.4512 | 30.0 | 3210 | 3.5826 | 0.0003 | 0.0007 | 0.0 | 0.0014 | 0.0001 | 0.0 | 0.0 | 0.0021 | 0.0075 | 0.0118 | 0.0062 | 0.01 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0015 | 0.0375 | 0.0 | 0.0 | 0.0 | 0.0 |
Framework versions
- Transformers 4.55.4
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
- Downloads last month
- -
Model tree for amSOwO/detr_finetuned_cppe5
Base model
microsoft/conditional-detr-resnet-50