metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:25743
- loss:MultipleNegativesRankingLoss
base_model: WhereIsAI/UAE-Large-V1
widget:
- source_sentence: >-
2:00 PM Facebook ... 0.0KB/sill Arief Smansa Fadhillah Jun 9 at 9:44 am.
89 111 60 = If in the next 2 weeks the people America who violates PSBB
will not happen corpses scattered on the streets, then I sure that the
fear of Corona is just a scam created by WHO and in Support by Mass Media.
sentences:
- MPs are entitled to a full pension after six months in office
- Photos of anti-racism demonstrations in the United States
- Wisconsin has more votes cast than registered voters.
- source_sentence: >-
A religious festival in Jaffna... Radical Otulabban, who opposes the
ordination of children, has nothing to do with this...
sentences:
- >-
A genuine article on Olympic female weightlifter suffering testicle
injury?
- This video shows pilots demonstrating against Covid vaccines
- Photo shows distressed children at a religious ritual in Sri Lanka
- source_sentence: >-
← 42 CHANNEL Markus Hain... * 107.4K subscribers Pinned message If you
like my work for our freedom... 74% 22:32 KANAL Markus Haintz, Lawyer &
Fre... forwarded message By Vicky_TheRedSparrow BREAKING NEWS: The Supreme
Court of Justice in the United States decided that the Covid vaccination
no vaccine is unsafe and um must be avoided at all costs - Big Pharma and
Anthony Fauci have lost a lawsuit by Robert F. Kennedy Jr. and a group of
scientists has been submitted! /breaking-news-the-supreme-court
-in-the-us-has-ruled-that-the-covid -pathogen-is-not-a-vaccine-is-unsafe
-and-must-be-avoided-at-all-costs-big -pharma-and-anthony-fauci-have-lost
-a-lawsuit-filed-by-r/ Truth To Power BREAKING NEWS: The Supreme Court In
The US Has Ruled That The Covid Dathanen in Distress & Vanaina la Llunafn
MUTE OFF X 138
sentences:
- 'USA: Supreme Court rules against corona vaccinations'
- >-
Pakistani government appoints former army general to head medical
regulatory body
- >-
"In Denmark, the law obliges owners of large agricultural land to plant
5% of their land flowers for bees. In Portugal?"
- source_sentence: MEXICO, Failed extortion in Celaya… and he came back to throw a grenade ….
sentences:
- Attack on people in a cafe in Celaya, Mexico
- UNICEF issued guidelines for the prevention of coronavirus infections
- Image shows a road in Sri Lanka
- source_sentence: >-
The ELN movement supported with 80 thousand dollars! That is little money.
What's wrong with that? For us, nor the FARC nor the ELN they are groups
terrorists ” revores Arauz PRISI ANDRES ARAUZLela campaign with funds from
drug traffickers and terrorists
sentences:
- >-
Andrés Arauz said that he accepted financing from the ELN and that
neither the ELN nor the FARC are armed groups
- Holy communion banned in Toronto
- >-
Myanmar leader gives three-fingered salute in support of Thai
protesters?
pipeline_tag: sentence-similarity
library_name: sentence-transformers
SentenceTransformer based on WhereIsAI/UAE-Large-V1
This is a sentence-transformers model finetuned from WhereIsAI/UAE-Large-V1. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: WhereIsAI/UAE-Large-V1
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
"The ELN movement supported with 80 thousand dollars! That is little money. What's wrong with that? For us, nor the FARC nor the ELN they are groups terrorists ” revores Arauz PRISI ANDRES ARAUZLela campaign with funds from drug traffickers and terrorists",
'Andrés Arauz said that he accepted financing from the ELN and that neither the ELN nor the FARC are armed groups',
'Holy communion banned in Toronto',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 25,743 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 2 tokens
- mean: 109.01 tokens
- max: 512 tokens
- min: 5 tokens
- mean: 18.19 tokens
- max: 131 tokens
- min: 1.0
- mean: 1.0
- max: 1.0
- Samples:
sentence_0 sentence_1 label In the coming weeks and months, You will see the bananas with more pints of normal, due to the effect of the ashes of the volcano! Don't stop buying them! It only affects the image not the taste! Crops need to be harvested so that the banana trees can come out ahead! alamy a a alam alamy
Canary bananas are going to have more spots than normal due to the effect of the ashes of the volcano
1.0
Are they canceling Title of those who are over 70 years old!? Negative certificate Electoral registry office, says I owe nothing. But at the bottom of the page. it says "unsubscribed"! Over 70s must check that everything is in order with their title. Millions of retirees can vote for Bolsonaro.
Population over 70 is having the voter registration canceled in 2022
1.0
VIN dti PHILIPPINES FDA APPROVED Honey-C H52% 18:43 itine Appemess Vinity Resistance Bus KONTRA CORONA VIRUS Let's boost our immune system!
Government-approved immunity booster for COVID-19 sold online
1.0
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 2per_device_eval_batch_size
: 2num_train_epochs
: 1multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 2per_device_eval_batch_size
: 2per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss |
---|---|---|
0.0388 | 500 | 0.0473 |
0.0777 | 1000 | 0.0264 |
0.1165 | 1500 | 0.0258 |
0.1554 | 2000 | 0.0322 |
0.1942 | 2500 | 0.0225 |
0.2331 | 3000 | 0.0318 |
0.2719 | 3500 | 0.036 |
0.3108 | 4000 | 0.0254 |
0.3496 | 4500 | 0.0166 |
0.3884 | 5000 | 0.0231 |
0.4273 | 5500 | 0.0268 |
0.4661 | 6000 | 0.0293 |
0.5050 | 6500 | 0.0315 |
0.5438 | 7000 | 0.0292 |
0.5827 | 7500 | 0.0308 |
0.6215 | 8000 | 0.0206 |
0.6603 | 8500 | 0.0329 |
0.6992 | 9000 | 0.0379 |
0.7380 | 9500 | 0.0133 |
0.7769 | 10000 | 0.0255 |
0.8157 | 10500 | 0.0138 |
0.8546 | 11000 | 0.0414 |
0.8934 | 11500 | 0.015 |
0.9323 | 12000 | 0.0234 |
0.9711 | 12500 | 0.0274 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.3.1
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}