am-azadi's picture
Upload folder using huggingface_hub
8ea63ae verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:25743
  - loss:MultipleNegativesRankingLoss
base_model: WhereIsAI/UAE-Large-V1
widget:
  - source_sentence: >-
      2:00 PM Facebook ... 0.0KB/sill Arief Smansa Fadhillah Jun 9 at 9:44 am. 
      89 111 60 = If in the next 2 weeks the people America who violates PSBB
      will not happen corpses scattered on the streets, then I sure that the
      fear of Corona is just a scam created by WHO and in Support by Mass Media.
    sentences:
      - MPs are entitled to a full pension after six months in office
      - Photos of anti-racism demonstrations in the United States
      - Wisconsin has more votes cast than registered voters.
  - source_sentence: >-
      A religious festival in Jaffna... Radical Otulabban, who opposes the
      ordination of children, has nothing to do with this...
    sentences:
      - >-
        A genuine article on Olympic female weightlifter suffering testicle
        injury?
      - This video shows pilots demonstrating against Covid vaccines
      - Photo shows distressed children at a religious ritual in Sri Lanka
  - source_sentence: >-
      ← 42 CHANNEL Markus Hain... * 107.4K subscribers Pinned message If you
      like my work for our freedom... 74% 22:32 KANAL Markus Haintz, Lawyer &
      Fre... forwarded message By Vicky_TheRedSparrow BREAKING NEWS: The Supreme
      Court of Justice in the United States decided that the Covid vaccination
      no vaccine is unsafe and um must be avoided at all costs - Big Pharma and
      Anthony Fauci have lost a lawsuit by Robert F. Kennedy Jr. and a group of
      scientists has been submitted!  /breaking-news-the-supreme-court
      -in-the-us-has-ruled-that-the-covid -pathogen-is-not-a-vaccine-is-unsafe
      -and-must-be-avoided-at-all-costs-big -pharma-and-anthony-fauci-have-lost
      -a-lawsuit-filed-by-r/ Truth To Power BREAKING NEWS: The Supreme Court In
      The US Has Ruled That The Covid Dathanen in Distress & Vanaina la Llunafn
      MUTE OFF X 138
    sentences:
      - 'USA: Supreme Court rules against corona vaccinations'
      - >-
        Pakistani government appoints former army general to head medical
        regulatory body
      - >-
        "In Denmark, the law obliges owners of large agricultural land to plant
        5% of their land flowers for bees. In Portugal?"
  - source_sentence: MEXICO, Failed extortion in Celaya… and he came back to throw a grenade ….
    sentences:
      - Attack on people in a cafe in Celaya, Mexico
      - UNICEF issued guidelines for the prevention of coronavirus infections
      - Image shows a road in Sri Lanka
  - source_sentence: >-
      The ELN movement supported with 80 thousand dollars! That is little money.
      What's wrong with that? For us, nor the FARC nor the ELN they are groups
      terrorists ” revores Arauz PRISI ANDRES ARAUZLela campaign with funds from
      drug traffickers and terrorists
    sentences:
      - >-
        Andrés Arauz said that he accepted financing from the ELN and that
        neither the ELN nor the FARC are armed groups
      - Holy communion banned in Toronto
      - >-
        Myanmar leader gives three-fingered salute in support of Thai
        protesters?
pipeline_tag: sentence-similarity
library_name: sentence-transformers

SentenceTransformer based on WhereIsAI/UAE-Large-V1

This is a sentence-transformers model finetuned from WhereIsAI/UAE-Large-V1. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: WhereIsAI/UAE-Large-V1
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 1024 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    "The ELN movement supported with 80 thousand dollars! That is little money. What's wrong with that? For us, nor the FARC nor the ELN they are groups terrorists ” revores Arauz PRISI ANDRES ARAUZLela campaign with funds from drug traffickers and terrorists",
    'Andrés Arauz said that he accepted financing from the ELN and that neither the ELN nor the FARC are armed groups',
    'Holy communion banned in Toronto',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Training Dataset

Unnamed Dataset

  • Size: 25,743 training samples
  • Columns: sentence_0, sentence_1, and label
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1 label
    type string string float
    details
    • min: 2 tokens
    • mean: 109.01 tokens
    • max: 512 tokens
    • min: 5 tokens
    • mean: 18.19 tokens
    • max: 131 tokens
    • min: 1.0
    • mean: 1.0
    • max: 1.0
  • Samples:
    sentence_0 sentence_1 label
    In the coming weeks and months, You will see the bananas with more pints of normal, due to the effect of the ashes of the volcano! Don't stop buying them! It only affects the image not the taste! Crops need to be harvested so that the banana trees can come out ahead! alamy a a alam alamy Canary bananas are going to have more spots than normal due to the effect of the ashes of the volcano 1.0
    Are they canceling Title of those who are over 70 years old!? Negative certificate Electoral registry office, says I owe nothing. But at the bottom of the page. it says "unsubscribed"! Over 70s must check that everything is in order with their title. Millions of retirees can vote for Bolsonaro. Population over 70 is having the voter registration canceled in 2022 1.0
    VIN dti PHILIPPINES FDA APPROVED Honey-C H52% 18:43 itine Appemess Vinity Resistance Bus KONTRA CORONA VIRUS Let's boost our immune system! Government-approved immunity booster for COVID-19 sold online 1.0
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • per_device_train_batch_size: 2
  • per_device_eval_batch_size: 2
  • num_train_epochs: 1
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: no
  • prediction_loss_only: True
  • per_device_train_batch_size: 2
  • per_device_eval_batch_size: 2
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step Training Loss
0.0388 500 0.0473
0.0777 1000 0.0264
0.1165 1500 0.0258
0.1554 2000 0.0322
0.1942 2500 0.0225
0.2331 3000 0.0318
0.2719 3500 0.036
0.3108 4000 0.0254
0.3496 4500 0.0166
0.3884 5000 0.0231
0.4273 5500 0.0268
0.4661 6000 0.0293
0.5050 6500 0.0315
0.5438 7000 0.0292
0.5827 7500 0.0308
0.6215 8000 0.0206
0.6603 8500 0.0329
0.6992 9000 0.0379
0.7380 9500 0.0133
0.7769 10000 0.0255
0.8157 10500 0.0138
0.8546 11000 0.0414
0.8934 11500 0.015
0.9323 12000 0.0234
0.9711 12500 0.0274

Framework Versions

  • Python: 3.11.11
  • Sentence Transformers: 3.4.1
  • Transformers: 4.48.3
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.3.0
  • Datasets: 3.3.1
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}