SentenceTransformer based on am-azadi/KaLM-embedding-multilingual-mini-v1_Fine_Tuned_1e
This is a sentence-transformers model finetuned from am-azadi/KaLM-embedding-multilingual-mini-v1_Fine_Tuned_1e. It maps sentences & paragraphs to a 896-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: am-azadi/KaLM-embedding-multilingual-mini-v1_Fine_Tuned_1e
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 896 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: Qwen2Model
(1): Pooling({'word_embedding_dimension': 896, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'The moment of the death of President Mohamed Morsi, may God have mercy on him, God willing ',
'The moment of the death of President Mohamed Morsi This video belongs to the trial of those accused of the Port Said events and does not show the moment of the death of former Egyptian President Mohamed Morsi',
'Cuba has Interferon Alpha 2B, the cure, the vaccine against the coronavirus The Cuban antiviral Interferon Alfa 2B is used in China to treat patients with the new coronavirus, but it is neither a vaccine nor a cure',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 896]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 21,769 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 4 tokens
- mean: 109.9 tokens
- max: 512 tokens
- min: 14 tokens
- mean: 34.57 tokens
- max: 132 tokens
- Samples:
sentence_0 sentence_1 Sad, and we are hostages!! If that doesn't make you think about the “measures” that governors and mayors are taking there is nothing that can be made in Brazil
Action by a military police officer against a street vendor amid restrictive measures due to the covid-19 pandemic The photo in which a PM seizes products from a street vendor is from 2016, unrelated to the pandemic
This is why it's important to know your history d4 Rare photo of Queen Elizabeth II and Prince Phillip bowing before the real original African Royalty, Empress Menen Asfaw and her husband Emperor Ras Tafari Makonnen Woldemikael Haile Selassie I of Ethiopia...
Queen Elizabeth II bows before Ethiopian Emperor Haile Selassie British monarch's first visit to Ethiopia came 10 years after this photo was taken
Public Reaction on Hyderabad Priyanka Reddy Case Drabad Encounter . Common people say
Photo of suspects killed by police in Hyderabad rape-murder case This photo has circulated online since at least 2015 in connection with an unrelated case in a different Indian state
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 2per_device_eval_batch_size
: 2num_train_epochs
: 1multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 2per_device_eval_batch_size
: 2per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss |
---|---|---|
0.0459 | 500 | 0.0083 |
0.0919 | 1000 | 0.019 |
0.1378 | 1500 | 0.0255 |
0.1837 | 2000 | 0.0372 |
0.2297 | 2500 | 0.0315 |
0.2756 | 3000 | 0.0258 |
0.3215 | 3500 | 0.0211 |
0.3675 | 4000 | 0.0187 |
0.4134 | 4500 | 0.0264 |
0.4593 | 5000 | 0.0348 |
0.5053 | 5500 | 0.0197 |
0.5512 | 6000 | 0.0102 |
0.5972 | 6500 | 0.0092 |
0.6431 | 7000 | 0.0169 |
0.6890 | 7500 | 0.0109 |
0.7350 | 8000 | 0.0115 |
0.7809 | 8500 | 0.0173 |
0.8268 | 9000 | 0.0196 |
0.8728 | 9500 | 0.028 |
0.9187 | 10000 | 0.0218 |
0.9646 | 10500 | 0.0169 |
0.0459 | 500 | 0.004 |
0.0919 | 1000 | 0.02 |
0.1378 | 1500 | 0.0154 |
0.1837 | 2000 | 0.0141 |
0.2297 | 2500 | 0.014 |
0.2756 | 3000 | 0.0077 |
0.3215 | 3500 | 0.018 |
0.3675 | 4000 | 0.0079 |
0.4134 | 4500 | 0.0238 |
0.4593 | 5000 | 0.0183 |
0.5053 | 5500 | 0.0159 |
0.5512 | 6000 | 0.0043 |
0.5972 | 6500 | 0.0066 |
0.6431 | 7000 | 0.0068 |
0.6890 | 7500 | 0.0035 |
0.7350 | 8000 | 0.0042 |
0.7809 | 8500 | 0.0084 |
0.8268 | 9000 | 0.0049 |
0.8728 | 9500 | 0.0102 |
0.9187 | 10000 | 0.0048 |
0.9646 | 10500 | 0.0045 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 15
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for am-azadi/KaLM-embedding-multilingual-mini-v1_Fine_Tuned_3e
Base model
HIT-TMG/KaLM-embedding-multilingual-mini-v1