This is a model from blockchainlab test 2.4 - alnrg2arg/blockchainlabs_7B_merged_test2_4.

The project is running to make a small LLM for a on-device purpose.

Overall pipeline for this iteration is

1.Merging to make a base model (7B) 2.Prune the model to reduce the parameter (50% sparcity) 3.For recovery phase of the pruning, the DPO is chosen.

This model which is not pruned is intended to compare with the pruned model.

This is the code and parameters I chose for this model(DPO).

from transformers import TrainingArguments, AutoModelForCausalLM
from trl import DPOTrainer

dpo_trainer = DPOTrainer(
    model = model,
   
    ref_model = None,
    args = TrainingArguments(
        per_device_train_batch_size = 8,
        gradient_accumulation_steps = 8,
        warmup_ratio = 0.1,
        num_train_epochs = 3,
        learning_rate = 5e-6,
        fp16 = not torch.cuda.is_bf16_supported(),
        bf16 = torch.cuda.is_bf16_supported(),
        logging_steps = 1,
        optim = "adamw_8bit",
        weight_decay = 0.0,
        lr_scheduler_type = "linear",
        seed = 42,
        output_dir = "output_DPO",
    ),
    beta = 0.1,
    train_dataset = dataset,
    # eval_dataset = raw_datasets["test"],
    tokenizer = tokenizer,
    max_length = 1024,
    max_prompt_length = 512,
)

The code and parameters are borrowed from https://colab.research.google.com/drive/1SKrKGV-BZoU4kv5q3g0jtE_OhRgPtrrQ?usp=sharing

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for alnrg2arg/test3_sft_16bit_dpo

Finetuned
(8)
this model

Dataset used to train alnrg2arg/test3_sft_16bit_dpo