allenpoe's picture
End of training
2133a4e verified
|
raw
history blame
2.34 kB
metadata
language:
  - en
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - Jzuluaga/atcosim_corpus
metrics:
  - wer
model-index:
  - name: Whisper Base ATCOSIM
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: atcosim_corpus
          type: Jzuluaga/atcosim_corpus
          args: 'config: en, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 4.914301017675415

Whisper Base ATCOSIM

This model is a fine-tuned version of openai/whisper-small on the atcosim_corpus dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0770
  • Wer: 4.9143

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.882 0.2092 100 1.5290 67.4143
0.4334 0.4184 200 0.4251 26.2587
0.1883 0.6276 300 0.2218 15.5932
0.1259 0.8368 400 0.1487 10.9869
0.0713 1.0460 500 0.1168 9.4135
0.0446 1.2552 600 0.1036 7.5656
0.0652 1.4644 700 0.0919 6.3203
0.0508 1.6736 800 0.0829 5.1152
0.038 1.8828 900 0.0776 4.9009
0.0186 2.0921 1000 0.0770 4.9143

Framework versions

  • Transformers 4.42.0.dev0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1