|
--- |
|
language: "en" |
|
tags: |
|
- controlled generation |
|
- perturbation |
|
widget: |
|
- text: "[VERB+passive+past: break | PATIENT+partial: cup] <extra_id_0> <extra_id_1> <extra_id_2> ." |
|
- max_length: |
|
--- |
|
|
|
# Tailor |
|
|
|
## Model description |
|
|
|
This is a ported version of [Tailor](https://homes.cs.washington.edu/~wtshuang/static/papers/2021-arxiv-tailor.pdf), the general-purpose counterfactual generator. |
|
For more code release, please refer to [this github page](https://github.com/allenai/tailor). |
|
|
|
#### How to use |
|
|
|
```python |
|
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM |
|
|
|
model_path = "allenai/tailor" |
|
generator = pipeline("text2text-generation", |
|
model=AutoModelForSeq2SeqLM.from_pretrained(model_path), |
|
tokenizer=AutoTokenizer.from_pretrained(model_path), |
|
framework="pt", device=0) |
|
|
|
prompt_text = "[VERB+active+past: comfort | AGENT+complete: the doctor | PATIENT+partial: athlete | LOCATIVE+partial: in] <extra_id_0> , <extra_id_1> <extra_id_2> <extra_id_3> ." |
|
generator(prompt_text, max_length=200) |
|
``` |
|
### BibTeX entry and citation info |
|
```bibtex |
|
@misc{ross2021tailor, |
|
title={Tailor: Generating and Perturbing Text with Semantic Controls}, |
|
author={Alexis Ross and Tongshuang Wu and Hao Peng and Matthew E. Peters and Matt Gardner}, |
|
year={2021}, |
|
eprint={2107.07150}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL}, |
|
url={https://arxiv.org/abs/2107.07150}, |
|
} |
|
``` |
|
|