|
--- |
|
license: llama2 |
|
base_model: codellama/CodeLlama-7b-hf |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: code-llama-sparql-lcquad-large-dbpedia |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# code-llama-sparql-lcquad-large-dbpedia |
|
|
|
This model is a fine-tuned version of [codellama/CodeLlama-7b-hf](https://huggingface.co/codellama/CodeLlama-7b-hf) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2040 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 100 |
|
- training_steps: 400 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 1.3087 | 0.0184 | 20 | 1.3391 | |
|
| 1.0131 | 0.0368 | 40 | 0.7246 | |
|
| 0.5023 | 0.0553 | 60 | 0.4406 | |
|
| 0.4287 | 0.0737 | 80 | 0.3738 | |
|
| 0.3432 | 0.0921 | 100 | 0.3530 | |
|
| 0.2725 | 0.1105 | 120 | 0.3329 | |
|
| 0.2539 | 0.1290 | 140 | 0.2888 | |
|
| 0.2847 | 0.1474 | 160 | 0.2762 | |
|
| 0.253 | 0.1658 | 180 | 0.2598 | |
|
| 0.2168 | 0.1842 | 200 | 0.2480 | |
|
| 0.2194 | 0.2027 | 220 | 0.2516 | |
|
| 0.2123 | 0.2211 | 240 | 0.2300 | |
|
| 0.2366 | 0.2395 | 260 | 0.2180 | |
|
| 0.2129 | 0.2579 | 280 | 0.2181 | |
|
| 0.2073 | 0.2764 | 300 | 0.2154 | |
|
| 0.1992 | 0.2948 | 320 | 0.2086 | |
|
| 0.2086 | 0.3132 | 340 | 0.2069 | |
|
| 0.2237 | 0.3316 | 360 | 0.2056 | |
|
| 0.1982 | 0.3501 | 380 | 0.2043 | |
|
| 0.2039 | 0.3685 | 400 | 0.2040 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.2 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.10.1 |
|
- Tokenizers 0.19.1 |
|
|