SetFit with akhooli/sbert-nli-500k-triplets-MB

This is a SetFit model that can be used for Text Classification. This SetFit model uses akhooli/sbert-nli-500k-triplets-MB as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
positive
  • ' سبحان الله الفلسطينيين شعب خاين في كل مكان \nلاحول ولا قوة إلا بالله'
  • 'يا بيك عّم تخبرنا عن شي ما فينا تعملو نحن ماًعندنا نواب ولا وزراء بمثلونا بالدولة الا اذا زهقان وعبالك ليك'
  • 'جوز كذابين منافقين…'
negative
  • 'ربي لا تجعلني أسيء الظن بأحد ولا تجعل في قلبي شيئا على أحد ، اللهم أسألك قلباً نقياً صافيا'
  • 'هشام حداد عامل فيها جون ستيوارت'
  • ' بحياة اختك من وين بتجيبي اخبارك؟؟ من صغري وانا عبالي كون… LINK'

Evaluation

Metrics

Label Accuracy
all 0.7957

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("akhooli/setfit_ar_hs_mb")
# Run inference
preds = model("يا حاقد ع الاسلام السياسي")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 1 18.8388 185
Label Training Sample Count
negative 5200
positive 4943

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (1, 1)
  • max_steps: 6000
  • sampling_strategy: undersampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • run_name: setfit_hate_52k_mb_6k
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0003 1 0.3373 -
0.0333 100 0.2955 -
0.0667 200 0.2535 -
0.1 300 0.2373 -
0.1333 400 0.2228 -
0.1667 500 0.1956 -
0.2 600 0.1768 -
0.2333 700 0.1489 -
0.2667 800 0.122 -
0.3 900 0.1045 -
0.3333 1000 0.086 -
0.3667 1100 0.0681 -
0.4 1200 0.067 -
0.4333 1300 0.0477 -
0.4667 1400 0.043 -
0.5 1500 0.0316 -
0.5333 1600 0.0251 -
0.5667 1700 0.0236 -
0.6 1800 0.0163 -
0.6333 1900 0.0148 -
0.6667 2000 0.0105 -
0.7 2100 0.018 -
0.7333 2200 0.013 -
0.7667 2300 0.0103 -
0.8 2400 0.0107 -
0.8333 2500 0.0115 -
0.8667 2600 0.0069 -
0.9 2700 0.0062 -
0.9333 2800 0.0074 -
0.9667 2900 0.0063 -
1.0 3000 0.0068 -
1.0333 3100 0.0048 -
1.0667 3200 0.0055 -
1.1 3300 0.0047 -
1.1333 3400 0.0043 -
1.1667 3500 0.0029 -
1.2 3600 0.0036 -
1.2333 3700 0.0034 -
1.2667 3800 0.0024 -
1.3 3900 0.0033 -
1.3333 4000 0.0042 -
1.3667 4100 0.0039 -
1.4 4200 0.0019 -
1.4333 4300 0.0022 -
1.4667 4400 0.0031 -
1.5 4500 0.0019 -
1.5333 4600 0.0036 -
1.5667 4700 0.0017 -
1.6 4800 0.0007 -
1.6333 4900 0.0006 -
1.6667 5000 0.0019 -
1.7 5100 0.0022 -
1.7333 5200 0.0013 -
1.7667 5300 0.0025 -
1.8 5400 0.0024 -
1.8333 5500 0.0013 -
1.8667 5600 0.0022 -
1.9 5700 0.0022 -
1.9333 5800 0.0019 -
1.9667 5900 0.0019 -
2.0 6000 0.0031 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.2.0.dev0
  • Sentence Transformers: 3.3.1
  • Transformers: 4.48.0
  • PyTorch: 2.5.1+cu121
  • Datasets: 3.2.0
  • Tokenizers: 0.21.0

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
6
Safetensors
Model size
149M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for akhooli/setfit_ar_hs_mb

Finetuned
(1)
this model

Evaluation results