mt5-small-synthetic-data2

This model is a fine-tuned version of google/mt5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8493
  • Rouge1: 0.5864
  • Rouge2: 0.4472
  • Rougel: 0.5690
  • Rougelsum: 0.5675

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5.6e-05
  • train_batch_size: 12
  • eval_batch_size: 12
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
18.931 1.0 50 9.0942 0.0 0.0 0.0 0.0
11.3652 2.0 100 5.2268 0.0025 0.0014 0.0025 0.0025
7.6242 3.0 150 3.0583 0.0755 0.0247 0.0712 0.0697
5.0038 4.0 200 2.1559 0.1720 0.0608 0.1415 0.1411
3.4385 5.0 250 1.6094 0.2058 0.0858 0.1798 0.1801
2.7359 6.0 300 1.4043 0.3742 0.2353 0.3549 0.3574
2.2687 7.0 350 1.2929 0.4226 0.2639 0.3944 0.3962
2.0252 8.0 400 1.2258 0.4436 0.2820 0.4129 0.4159
1.8135 9.0 450 1.1667 0.4529 0.2932 0.4160 0.4176
1.7448 10.0 500 1.1103 0.4729 0.3152 0.4391 0.4409
1.5793 11.0 550 1.0840 0.5045 0.3557 0.4774 0.4787
1.5258 12.0 600 1.0532 0.5266 0.3857 0.5053 0.5061
1.4391 13.0 650 1.0176 0.5507 0.4182 0.5381 0.5367
1.3783 14.0 700 1.0015 0.5595 0.4233 0.5387 0.5386
1.318 15.0 750 0.9825 0.5699 0.4260 0.5476 0.5468
1.2871 16.0 800 0.9581 0.5785 0.4334 0.5564 0.5554
1.2305 17.0 850 0.9489 0.5766 0.4343 0.5540 0.5538
1.2609 18.0 900 0.9362 0.5853 0.4432 0.5633 0.5633
1.1928 19.0 950 0.9256 0.5847 0.4438 0.5637 0.5635
1.1165 20.0 1000 0.9186 0.5712 0.4331 0.5535 0.5535
1.1624 21.0 1050 0.9080 0.5763 0.4434 0.5581 0.5586
1.0909 22.0 1100 0.9040 0.5774 0.4417 0.5596 0.5604
1.0885 23.0 1150 0.8969 0.5827 0.4465 0.5642 0.5646
1.1378 24.0 1200 0.8933 0.5855 0.4476 0.5668 0.5663
0.9968 25.0 1250 0.8832 0.5851 0.4467 0.5664 0.5659
1.0871 26.0 1300 0.8776 0.5848 0.4460 0.5661 0.5659
1.0546 27.0 1350 0.8749 0.5825 0.4443 0.5635 0.5630
0.9935 28.0 1400 0.8687 0.5842 0.4467 0.5682 0.5678
1.0042 29.0 1450 0.8661 0.5834 0.4466 0.5669 0.5666
0.9903 30.0 1500 0.8628 0.5843 0.4485 0.5655 0.5653
0.9701 31.0 1550 0.8583 0.5822 0.4436 0.5630 0.5629
0.9585 32.0 1600 0.8552 0.5783 0.4405 0.5610 0.5605
0.9412 33.0 1650 0.8555 0.5897 0.4492 0.5696 0.5687
0.9732 34.0 1700 0.8526 0.5853 0.4477 0.5661 0.5655
0.9248 35.0 1750 0.8535 0.5828 0.4429 0.5646 0.5637
0.9408 36.0 1800 0.8520 0.5868 0.4474 0.5695 0.5680
0.9951 37.0 1850 0.8506 0.5834 0.4456 0.5656 0.5645
0.9316 38.0 1900 0.8500 0.5846 0.4470 0.5667 0.5657
0.9339 39.0 1950 0.8495 0.5864 0.4472 0.5690 0.5675
0.9519 40.0 2000 0.8493 0.5864 0.4472 0.5690 0.5675

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
4
Safetensors
Model size
300M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for ak2603/mt5-small-synthetic-data2

Base model

google/mt5-small
Finetuned
(399)
this model