Florence-2-FT-JP-TF3

This model is a fine-tuned version of microsoft/Florence-2-base-ft on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8131

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss
2.6073 0.1115 100 2.8164
2.4221 0.2230 200 2.6756
2.2154 0.3344 300 2.5625
2.2387 0.4459 400 2.4688
2.2048 0.5574 500 2.3977
2.151 0.6689 600 2.3204
1.9731 0.7804 700 2.3002
2.0566 0.8919 800 2.2333
2.0783 1.0033 900 2.1996
1.8874 1.1148 1000 2.1861
1.721 1.2263 1100 2.1866
1.9372 1.3378 1200 2.1360
1.783 1.4493 1300 2.1260
1.7028 1.5608 1400 2.1044
1.7303 1.6722 1500 2.0908
1.727 1.7837 1600 2.0673
1.8337 1.8952 1700 2.0213
1.7386 2.0067 1800 2.0350
1.5987 2.1182 1900 2.0028
1.6715 2.2297 2000 2.0117
1.6533 2.3411 2100 2.0031
1.6372 2.4526 2200 1.9778
1.6107 2.5641 2300 1.9897
1.6603 2.6756 2400 1.9783
1.6026 2.7871 2500 1.9599
1.5174 2.8986 2600 1.9597
1.6123 3.0100 2700 1.9432
1.524 3.1215 2800 1.9508
1.494 3.2330 2900 1.9571
1.4581 3.3445 3000 1.9524
1.4949 3.4560 3100 1.9400
1.472 3.5674 3200 1.9243
1.5104 3.6789 3300 1.9217
1.4193 3.7904 3400 1.9148
1.3834 3.9019 3500 1.9052
1.4237 4.0134 3600 1.8973
1.3952 4.1249 3700 1.8927
1.3422 4.2363 3800 1.9020
1.4286 4.3478 3900 1.8967
1.3241 4.4593 4000 1.8944
1.443 4.5708 4100 1.8655
1.4617 4.6823 4200 1.8740
1.425 4.7938 4300 1.8686
1.4033 4.9052 4400 1.8816
1.3862 5.0167 4500 1.8716
1.3397 5.1282 4600 1.8668
1.2487 5.2397 4700 1.8623
1.2266 5.3512 4800 1.8447
1.3607 5.4627 4900 1.8524
1.2804 5.5741 5000 1.8594
1.4155 5.6856 5100 1.8503
1.3445 5.7971 5200 1.8643
1.2873 5.9086 5300 1.8506
1.3181 6.0201 5400 1.8384
1.363 6.1315 5500 1.8440
1.2563 6.2430 5600 1.8438
1.3474 6.3545 5700 1.8463
1.2846 6.4660 5800 1.8440
1.2657 6.5775 5900 1.8455
1.3529 6.6890 6000 1.8356
1.1427 6.8004 6100 1.8412
1.1655 6.9119 6200 1.8330
1.2756 7.0234 6300 1.8317
1.0908 7.1349 6400 1.8373
1.205 7.2464 6500 1.8288
1.1937 7.3579 6600 1.8277
1.2626 7.4693 6700 1.8218
1.2383 7.5808 6800 1.8202
1.2212 7.6923 6900 1.8199
1.2275 7.8038 7000 1.8142
1.2715 7.9153 7100 1.8170
1.2888 8.0268 7200 1.8172
1.1628 8.1382 7300 1.8200
1.239 8.2497 7400 1.8219
1.2209 8.3612 7500 1.8137
1.3384 8.4727 7600 1.8118
1.2151 8.5842 7700 1.8134
1.2329 8.6957 7800 1.8131
1.2236 8.8071 7900 1.8159
1.2664 8.9186 8000 1.8166
1.2349 9.0301 8100 1.8121
1.1064 9.1416 8200 1.8149
1.2612 9.2531 8300 1.8133
1.2315 9.3645 8400 1.8149
1.1879 9.4760 8500 1.8135
1.0139 9.5875 8600 1.8161
1.2237 9.6990 8700 1.8146
1.2138 9.8105 8800 1.8129
1.2941 9.9220 8900 1.8131

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.3.0
  • Datasets 3.2.0
  • Tokenizers 0.20.3
Downloads last month
56
Safetensors
Model size
271M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API does not yet support model repos that contain custom code.

Model tree for aipib/Florence-2-FT-JP-DocVQA3

Finetuned
(17)
this model