visobert_massive_v4
This model is a fine-tuned version of uitnlp/visobert on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 4.7084
- Slot P: 0.6573
- Slot R: 0.7443
- Slot F1: 0.6981
- Slot Exact Match: 0.6783
- Intent Acc: 0.8603
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 256
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Slot P | Slot R | Slot F1 | Slot Exact Match | Intent Acc |
---|---|---|---|---|---|---|---|---|
No log | 1.0 | 45 | 16.5324 | 0.3429 | 0.1194 | 0.1771 | 0.3512 | 0.0654 |
72.9207 | 2.0 | 90 | 6.7376 | 0.5847 | 0.5786 | 0.5816 | 0.5721 | 0.5755 |
19.858 | 3.0 | 135 | 4.4954 | 0.6110 | 0.7040 | 0.6542 | 0.6390 | 0.7801 |
8.9732 | 4.0 | 180 | 3.9970 | 0.6564 | 0.7308 | 0.6916 | 0.6714 | 0.8264 |
5.7389 | 5.0 | 225 | 3.9234 | 0.6355 | 0.7383 | 0.6831 | 0.6719 | 0.8357 |
4.1383 | 6.0 | 270 | 3.9908 | 0.6735 | 0.7398 | 0.7051 | 0.6867 | 0.8549 |
3.0123 | 7.0 | 315 | 4.2218 | 0.6457 | 0.7299 | 0.6852 | 0.6758 | 0.8608 |
2.2138 | 8.0 | 360 | 4.4620 | 0.6467 | 0.7313 | 0.6864 | 0.6778 | 0.8598 |
1.6407 | 9.0 | 405 | 4.7084 | 0.6573 | 0.7443 | 0.6981 | 0.6783 | 0.8603 |
Framework versions
- Transformers 4.55.0
- Pytorch 2.7.0+cu126
- Datasets 3.6.0
- Tokenizers 0.21.4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for aiface/visobert_massive_v4
Base model
uitnlp/visobert