|
--- |
|
language: |
|
- ru |
|
tags: |
|
- spellchecking |
|
- M2M100 |
|
- pytorch |
|
- natural language generation |
|
license: mit |
|
datasets: |
|
- ai-forever/spellcheck_benchmark |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
library_name: transformers |
|
model-index: |
|
- name: sage-mt5-large |
|
results: |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: spellcheck_benchmark |
|
name: RUSpellRU |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 88.8 |
|
verified: false |
|
- name: Recall |
|
type: recall |
|
value: 71.5 |
|
verified: false |
|
- name: F1 |
|
type: f1 |
|
value: 79.2 |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: spellcheck_benchmark |
|
name: MultidomainGold |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 63.8 |
|
verified: false |
|
- name: Recall |
|
type: recall |
|
value: 61.1 |
|
verified: false |
|
- name: F1 |
|
type: f1 |
|
value: 62.4 |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: spellcheck_benchmark |
|
name: MedSpellchecker |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 78.8 |
|
verified: false |
|
- name: Recall |
|
type: recall |
|
value: 71.4 |
|
verified: false |
|
- name: F1 |
|
type: f1 |
|
value: 74.9 |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: spellcheck_benchmark |
|
name: GitHubTypoCorpusRu |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 47.1 |
|
verified: false |
|
- name: Recall |
|
type: recall |
|
value: 42.9 |
|
verified: false |
|
- name: F1 |
|
type: f1 |
|
value: 44.9 |
|
verified: false |
|
--- |
|
# sage-m2m100-1.2B model |
|
|
|
![banner](images/sage_banner.jpg) |
|
|
|
## Summary |
|
|
|
The model corrects spelling errors and typos by bringing all the words in the text to the norm of the Russian language. |
|
Corrector was trained based on the model [M2M100-1.2B](https://huggingface.co/facebook/m2m100_1.2B). |
|
An extensive dataset with “artificial” errors was taken as a training corpus: the corpus was assembled on the basis of the Russian-language Wikipedia and transcripts of Russian-language videos, then typos and spelling errors were automatically introduced into it using the library [SAGE](https://github.com/ai-forever/sage). |
|
The model is the fine-tuned version of the [pre-train](https://huggingface.co/ai-forever/RuM2M100-1.2B). |
|
|
|
## Public references |
|
- [SAGE library announcement](https://youtu.be/yFfkV0Qjuu0), DataFest 2023 |
|
- [Paper about synthetic error generation methods](https://www.dialog-21.ru/media/5914/martynovnplusetal056.pdf), Dialogue 2023 |
|
- [SAGE EACL 2024 paper](https://aclanthology.org/2024.findings-eacl.10/) |
|
|
|
|
|
## Examples |
|
| Input | Output | |
|
| --- | --- | |
|
| Думю ешцъа лет череа 10 ретроспективно просматривотьэ то будкетцц мне невероя тна ин те р но | Думаю что лет через 10 ретроспективно просматривать это будет мне невероятно интересно | |
|
| Основая цель мероприятия - практическая отработка навыков по оказанию помощи гражданам, попавшим в ДТП, а также повышение и совершенствование уровня профессиональной подготовки сотрудников МЧС при проведении аварийно-спасательных работ по ликвидации последствий дорожно-транспортных проишествий, сокращение временных показателей реагирования. | Основная цель мероприятия - практическая отработка навыков по оказанию помощи гражданам, попавшим в ДТП, а также повышение и совершенствование уровня профессиональной подготовки сотрудников МЧС при проведении аварийно-спасательных работ по ликвидации последствий дорожно-транспортных происшествий, сокращение временных показателей реагирования. | |
|
| прийдя в МГТУ я был удивлен никого необноружив там… | придя в МГТУ я был удивлен никого не обнаружив там | |
|
| | | |
|
|
|
## Metrics |
|
### Quality |
|
Below are automatic metrics for determining the correctness of the spell checkers. |
|
We compare our solution with both open automatic spell checkers and the ChatGPT family of models on all four available datasets: |
|
- **RUSpellRU**: texts collected from ([LiveJournal](https://www.livejournal.com/media)), with manually corrected typos and errors; |
|
- **MultidomainGold**: examples from 7 text sources, including the open web, news, social media, reviews, subtitles, policy documents and literary works; |
|
- **MedSpellChecker**: texts with errors from medical anamnesis; |
|
- **GitHubTypoCorpusRu**: spelling errors and typos in commits from [GitHub](https://github.com); |
|
|
|
**RUSpellRU** |
|
| Model | Precision | Recall | F1 | |
|
| --- | --- | --- | --- | |
|
| sage-m2m100-1.2B | 88.8 | 71.5 | 79.2 | |
|
| sage-ai-service | 93.5 | 82.4 | 87.6 | |
|
| gpt-3.5-turbo | 39.6 | 62.3 | 48.5 | |
|
| gpt-4 | 69.5 | 81.0 | 74.8 | |
|
| Yandex.Speller | 83.0 | 59.8 | 69.5 | |
|
| JamSpell | 42.1 | 32.8 | 36.9 | |
|
| HunSpell | 31.3 | 34.9 | 33.0 | |
|
|
|
**MultidomainGold** |
|
| Model | Precision | Recall | F1 | |
|
| --- | --- | --- | --- | |
|
| sage-m2m100-1.2B | 63.8 | 61.1 | 62.4 | |
|
| sage-ai-service | 70.9 | 68.8 | 69.9 | |
|
| gpt-3.5-turbo | 17.8 | 56.1 | 27.0 | |
|
| gpt-4 | 31.1 | 78.1 | 44.5 | |
|
| Yandex.Speller | 52.9 | 51.4 | 52.2 | |
|
| JamSpell | 25.7 | 30.6 | 28.0 | |
|
| HunSpell | 16.2 | 40.1 | 23.0 | |
|
|
|
**MedSpellChecker** |
|
| Model | Precision | Recall | F1 | |
|
| --- | --- | --- | --- | |
|
| sage-m2m100-1.2B | 78.8 | 71.4 | 74.9 | |
|
| sage-ai-service | 73.4 | 76.2 | 74.9 | |
|
| gpt-3.5-turbo | 15.1 | 53.6 | 23.5 | |
|
| gpt-4 | 48.9 | 88.7 | 63.1 | |
|
| Yandex.Speller | 80.6 | 47.8 | 60.0 | |
|
| JamSpell | 24.6 | 29.7 | 26.9 | |
|
| HunSpell | 10.3 | 40.2 | 16.4 | |
|
|
|
**GitHubTypoCorpusRu** |
|
| Model | Precision | Recall | F1 | |
|
| --- | --- | --- | --- | |
|
| sage-m2m100-1.2B | 47.1 | 42.9 | 44.9 | |
|
| sage-ai-service | 76.1 | 51.2 | 61.2 | |
|
| gpt-3.5-turbo | 23.7 | 43.9 | 30.8 | |
|
| gpt-4 | 34.7 | 60.5 | 44.1| |
|
| Yandex.Speller | 67.7 | 37.5 | 48.3 | |
|
| JamSpell | 49.5 | 29.9 | 37.3 | |
|
| HunSpell | 28.5 | 30.7 | 29.6 | |
|
|
|
## How to use |
|
```python |
|
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer |
|
|
|
path_to_model = "ai-forever/sage-m2m100-1.2B" |
|
model = M2M100ForConditionalGeneration.from_pretrained(path_to_model) |
|
tokenizer = M2M100Tokenizer.from_pretrained(path_to_model, src_lang="ru", tgt_lang="ru") |
|
|
|
sentence = "прийдя в МГТУ я был удивлен никого необноружив там…" |
|
encodings = tokenizer(sentence, return_tensors="pt") |
|
generated_tokens = model.generate( |
|
**encodings, forced_bos_token_id=tokenizer.get_lang_id("ru")) |
|
answer = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) |
|
|
|
print(answer) |
|
#["прийдя в МГТУ я был удивлен никого не обнаружив там..."] |
|
``` |
|
|
|
## Resources |
|
- [SAGE library](https://github.com/ai-forever/sage), GitHub |
|
- [sage-fredt5-large](https://huggingface.co/ai-forever/sage-fredt5-large), HuggingFace |
|
- [sage-fredt5-distilled-95m](https://huggingface.co/ai-forever/sage-fredt5-distilled-95m), HuggingFace |
|
- [sage-m2m100-1.2B](https://huggingface.co/ai-forever/sage-m2m100-1.2B), HuggingFace |
|
- [sage-mt5-large](https://huggingface.co/ai-forever/sage-mt5-large), HuggingFace |
|
|
|
## License |
|
Model [M2M100-1.2B](https://huggingface.co/facebook/m2m100_1.2B), on the basis of which our solution is made, and its source code are supplied under the MIT open license. |
|
Our solution also comes with MIT license. |
|
|
|
## Specifications |
|
- File size: 5 Gb; |
|
- Framework: pytorch |
|
- Format: AI Service |
|
- Version: v2.0 |
|
- Developer: SberDevices, AGI NLP |
|
|
|
## Contacts |
|
[email protected] |