|
--- |
|
license: apache-2.0 |
|
library_name: peft |
|
tags: |
|
- axolotl |
|
- generated_from_trainer |
|
base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T |
|
model-index: |
|
- name: alpaca-cleaned-tiny-llama |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.4.1` |
|
```yaml |
|
base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T |
|
model_type: LlamaForCausalLM |
|
tokenizer_type: LlamaTokenizer |
|
|
|
load_in_8bit: true |
|
load_in_4bit: false |
|
strict: false |
|
|
|
datasets: |
|
# - path: mhenrichsen/alpaca_2k_test |
|
- path: yahma/alpaca-cleaned |
|
type: alpaca |
|
dataset_prepared_path: |
|
val_set_size: 0.05 |
|
output_dir: ./outputs/alpaca-cleaned-tiny-llama |
|
hub_model_id: ahmedsamirio/alpaca-cleaned-tiny-llama |
|
|
|
sequence_len: 4096 |
|
sample_packing: true |
|
eval_sample_packing: true |
|
pad_to_sequence_len: true |
|
|
|
adapter: lora |
|
lora_model_dir: |
|
lora_r: 32 |
|
lora_alpha: 16 |
|
lora_dropout: 0.05 |
|
lora_target_linear: true |
|
lora_fan_in_fan_out: |
|
|
|
wandb_project: alpaca-tiny-llama |
|
wandb_entity: ahmedsamirio |
|
wandb_watch: |
|
wandb_name: |
|
wandb_log_model: |
|
|
|
gradient_accumulation_steps: 4 |
|
micro_batch_size: 2 |
|
num_epochs: 4 |
|
optimizer: adamw_bnb_8bit |
|
lr_scheduler: cosine |
|
learning_rate: 0.0002 |
|
|
|
train_on_inputs: false |
|
group_by_length: false |
|
bf16: auto |
|
fp16: |
|
tf32: false |
|
|
|
gradient_checkpointing: true |
|
early_stopping_patience: |
|
resume_from_checkpoint: |
|
local_rank: |
|
logging_steps: 1 |
|
xformers_attention: |
|
flash_attention: true |
|
|
|
warmup_steps: 10 |
|
evals_per_epoch: 4 |
|
saves_per_epoch: 1 |
|
debug: |
|
deepspeed: |
|
weight_decay: 0.0 |
|
fsdp: |
|
fsdp_config: |
|
special_tokens: |
|
|
|
``` |
|
|
|
</details><br> |
|
|
|
# alpaca-cleaned-tiny-llama |
|
|
|
This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.1115 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 10 |
|
- num_epochs: 4 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 1.3435 | 0.0029 | 1 | 1.4128 | |
|
| 1.1926 | 0.2498 | 85 | 1.1723 | |
|
| 1.1275 | 0.4996 | 170 | 1.1518 | |
|
| 1.1153 | 0.7494 | 255 | 1.1410 | |
|
| 1.1289 | 0.9993 | 340 | 1.1312 | |
|
| 1.1267 | 1.2278 | 425 | 1.1276 | |
|
| 1.1053 | 1.4776 | 510 | 1.1220 | |
|
| 1.1261 | 1.7274 | 595 | 1.1172 | |
|
| 1.0991 | 1.9772 | 680 | 1.1144 | |
|
| 1.0295 | 2.2057 | 765 | 1.1157 | |
|
| 1.086 | 2.4555 | 850 | 1.1131 | |
|
| 1.029 | 2.7054 | 935 | 1.1114 | |
|
| 1.019 | 2.9552 | 1020 | 1.1108 | |
|
| 1.0158 | 3.1830 | 1105 | 1.1113 | |
|
| 1.0297 | 3.4328 | 1190 | 1.1123 | |
|
| 1.0571 | 3.6826 | 1275 | 1.1116 | |
|
| 1.0306 | 3.9324 | 1360 | 1.1115 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.11.1 |
|
- Transformers 4.41.1 |
|
- Pytorch 2.1.2+cu118 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |