Train-Test-Augmentation-V5-beit-base
This model is a fine-tuned version of microsoft/beit-base-patch16-224-pt22k-ft22k on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.6899
- Accuracy: 0.8442
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.0473 | 1.0 | 55 | 0.8312 | 0.7759 |
0.3767 | 2.0 | 110 | 0.5476 | 0.8336 |
0.176 | 3.0 | 165 | 0.5248 | 0.8256 |
0.07 | 4.0 | 220 | 0.5597 | 0.8527 |
0.043 | 5.0 | 275 | 0.5707 | 0.8472 |
0.0272 | 6.0 | 330 | 0.6225 | 0.8264 |
0.0168 | 7.0 | 385 | 0.5721 | 0.8553 |
0.0076 | 8.0 | 440 | 0.5967 | 0.8608 |
0.006 | 9.0 | 495 | 0.7036 | 0.8272 |
0.007 | 10.0 | 550 | 0.7167 | 0.8400 |
0.0048 | 11.0 | 605 | 0.6734 | 0.8506 |
0.0023 | 12.0 | 660 | 0.7424 | 0.8332 |
0.0032 | 13.0 | 715 | 0.7283 | 0.8340 |
0.002 | 14.0 | 770 | 0.6805 | 0.8502 |
0.0021 | 15.0 | 825 | 0.6899 | 0.8442 |
Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.19.1
- Tokenizers 0.15.2
- Downloads last month
- 199
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for ahmedesmail16/Train-Test-Augmentation-V5-beit-base
Base model
microsoft/beit-base-patch16-224-pt22k-ft22k