SentenceTransformer based on agentlans/deberta-v3-base-zyda-2
This is a sentence-transformers model finetuned from agentlans/deberta-v3-base-zyda-2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
This model has been finetuned on the agentlans/sentence-paraphrases dataset.
- Text were truncated to 500 characters to save VRAM.
- Two negative examples were generated for each row in the dataset.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: agentlans/deberta-v3-base-zyda-2
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("agentlans/deberta-v3-base-zyda-2-v2")
# Run inference
sentences = [
"While holidaying with her partner and his son, Mrs Searle, an administrator, stated: 'If I had been informed, I would have instructed her to desist.'",
"Mrs Searle, an administrator, who was on holiday with her partner and his son, added: 'If I had known I would have told her to stop.",
'Mechanical digestion involves breaking down large food pieces into smaller ones that can be acted upon by digestive enzymes.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,079,040 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 6 tokens
- mean: 22.64 tokens
- max: 75 tokens
- min: 6 tokens
- mean: 20.55 tokens
- max: 71 tokens
- min: 0.0
- mean: 0.33
- max: 1.0
- Samples:
sentence_0 sentence_1 label Mrs Alper's late spouse, Sam, had an extensive art collection that was also destroyed.
The art collection of Mrs Alper's deceased husband, Sam, was also destroyed.
1.0
Is the 1 x 1 Rubik's cube intended to be comical?
What is the least fuve digit decimal number with five significant figures?
0.0
What is the Prasoon Joshi song that you enjoy the most and what is the rationale behind your preference?
What are some interesting facts about human brain?
0.0
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 16per_device_eval_batch_size
: 16multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Click to expand
Epoch | Step | Training Loss |
---|---|---|
0.0074 | 500 | 1.1791 |
0.0148 | 1000 | 0.4056 |
0.0222 | 1500 | 0.2729 |
0.0297 | 2000 | 0.1775 |
0.0371 | 2500 | 0.1513 |
0.0445 | 3000 | 0.1329 |
0.0519 | 3500 | 0.1503 |
0.0593 | 4000 | 0.1325 |
0.0667 | 4500 | 0.1187 |
0.0741 | 5000 | 0.1012 |
0.0816 | 5500 | 0.1504 |
0.0890 | 6000 | 0.1161 |
0.0964 | 6500 | 0.1194 |
0.1038 | 7000 | 0.1172 |
0.1112 | 7500 | 0.1391 |
0.1186 | 8000 | 0.1056 |
0.1260 | 8500 | 0.0697 |
0.1335 | 9000 | 0.1157 |
0.1409 | 9500 | 0.1009 |
0.1483 | 10000 | 0.0996 |
0.1557 | 10500 | 0.1076 |
0.1631 | 11000 | 0.1057 |
0.1705 | 11500 | 0.084 |
0.1779 | 12000 | 0.0711 |
0.1853 | 12500 | 0.1026 |
0.1928 | 13000 | 0.0841 |
0.2002 | 13500 | 0.1149 |
0.2076 | 14000 | 0.0871 |
0.2150 | 14500 | 0.1201 |
0.2224 | 15000 | 0.0851 |
0.2298 | 15500 | 0.073 |
0.2372 | 16000 | 0.0893 |
0.2447 | 16500 | 0.1083 |
0.2521 | 17000 | 0.0824 |
0.2595 | 17500 | 0.0721 |
0.2669 | 18000 | 0.056 |
0.2743 | 18500 | 0.1062 |
0.2817 | 19000 | 0.094 |
0.2891 | 19500 | 0.0887 |
0.2966 | 20000 | 0.0756 |
0.3040 | 20500 | 0.0932 |
0.3114 | 21000 | 0.0718 |
0.3188 | 21500 | 0.067 |
0.3262 | 22000 | 0.0792 |
0.3336 | 22500 | 0.0639 |
0.3410 | 23000 | 0.0987 |
0.3485 | 23500 | 0.0682 |
0.3559 | 24000 | 0.0769 |
0.3633 | 24500 | 0.1255 |
0.3707 | 25000 | 0.0929 |
0.3781 | 25500 | 0.0948 |
0.3855 | 26000 | 0.0983 |
0.3929 | 26500 | 0.1228 |
0.4004 | 27000 | 0.1028 |
0.4078 | 27500 | 0.0856 |
0.4152 | 28000 | 0.1173 |
0.4226 | 28500 | 0.0718 |
0.4300 | 29000 | 0.0964 |
0.4374 | 29500 | 0.0844 |
0.4448 | 30000 | 0.0871 |
0.4523 | 30500 | 0.0943 |
0.4597 | 31000 | 0.1353 |
0.4671 | 31500 | 0.0634 |
0.4745 | 32000 | 0.1263 |
0.4819 | 32500 | 0.1098 |
0.4893 | 33000 | 0.098 |
0.4967 | 33500 | 0.1182 |
0.5042 | 34000 | 0.0818 |
0.5116 | 34500 | 0.1207 |
0.5190 | 35000 | 0.097 |
0.5264 | 35500 | 0.0904 |
0.5338 | 36000 | 0.1011 |
0.5412 | 36500 | 0.1323 |
0.5486 | 37000 | 0.0699 |
0.5560 | 37500 | 0.0803 |
0.5635 | 38000 | 0.0737 |
0.5709 | 38500 | 0.0798 |
0.5783 | 39000 | 0.1348 |
0.5857 | 39500 | 0.0914 |
0.5931 | 40000 | 0.0654 |
0.6005 | 40500 | 0.0729 |
0.6079 | 41000 | 0.0737 |
0.6154 | 41500 | 0.1018 |
0.6228 | 42000 | 0.0809 |
0.6302 | 42500 | 0.0906 |
0.6376 | 43000 | 0.0955 |
0.6450 | 43500 | 0.0759 |
0.6524 | 44000 | 0.1055 |
0.6598 | 44500 | 0.0924 |
0.6673 | 45000 | 0.1027 |
0.6747 | 45500 | 0.0826 |
0.6821 | 46000 | 0.0763 |
0.6895 | 46500 | 0.1035 |
0.6969 | 47000 | 0.0969 |
0.7043 | 47500 | 0.0714 |
0.7117 | 48000 | 0.0826 |
0.7192 | 48500 | 0.0923 |
0.7266 | 49000 | 0.0651 |
0.7340 | 49500 | 0.0901 |
0.7414 | 50000 | 0.1001 |
0.7488 | 50500 | 0.0961 |
0.7562 | 51000 | 0.085 |
0.7636 | 51500 | 0.0633 |
0.7711 | 52000 | 0.0879 |
0.7785 | 52500 | 0.0717 |
0.7859 | 53000 | 0.0589 |
0.7933 | 53500 | 0.0822 |
0.8007 | 54000 | 0.0857 |
0.8081 | 54500 | 0.0994 |
0.8155 | 55000 | 0.0752 |
0.8230 | 55500 | 0.0965 |
0.8304 | 56000 | 0.0776 |
0.8378 | 56500 | 0.089 |
0.8452 | 57000 | 0.0638 |
0.8526 | 57500 | 0.111 |
0.8600 | 58000 | 0.072 |
0.8674 | 58500 | 0.0755 |
0.8749 | 59000 | 0.096 |
0.8823 | 59500 | 0.1205 |
0.8897 | 60000 | 0.0728 |
0.8971 | 60500 | 0.1014 |
0.9045 | 61000 | 0.0987 |
0.9119 | 61500 | 0.0756 |
0.9193 | 62000 | 0.0746 |
0.9267 | 62500 | 0.0992 |
0.9342 | 63000 | 0.0961 |
0.9416 | 63500 | 0.0861 |
0.9490 | 64000 | 0.0723 |
0.9564 | 64500 | 0.0765 |
0.9638 | 65000 | 0.0859 |
0.9712 | 65500 | 0.0839 |
0.9786 | 66000 | 0.085 |
0.9861 | 66500 | 0.1136 |
0.9935 | 67000 | 0.0735 |
1.0009 | 67500 | 0.0791 |
1.0083 | 68000 | 0.0747 |
1.0157 | 68500 | 0.1148 |
1.0231 | 69000 | 0.1022 |
1.0305 | 69500 | 0.0501 |
1.0380 | 70000 | 0.0735 |
1.0454 | 70500 | 0.0734 |
1.0528 | 71000 | 0.0705 |
1.0602 | 71500 | 0.0854 |
1.0676 | 72000 | 0.0858 |
1.0750 | 72500 | 0.0453 |
1.0824 | 73000 | 0.0768 |
1.0899 | 73500 | 0.0949 |
1.0973 | 74000 | 0.1028 |
1.1047 | 74500 | 0.1192 |
1.1121 | 75000 | 0.0754 |
1.1195 | 75500 | 0.0818 |
1.1269 | 76000 | 0.0662 |
1.1343 | 76500 | 0.0659 |
1.1418 | 77000 | 0.0913 |
1.1492 | 77500 | 0.071 |
1.1566 | 78000 | 0.0682 |
1.1640 | 78500 | 0.0858 |
1.1714 | 79000 | 0.0781 |
1.1788 | 79500 | 0.0782 |
1.1862 | 80000 | 0.0722 |
1.1937 | 80500 | 0.0686 |
1.2011 | 81000 | 0.0751 |
1.2085 | 81500 | 0.0611 |
1.2159 | 82000 | 0.1114 |
1.2233 | 82500 | 0.0856 |
1.2307 | 83000 | 0.0789 |
1.2381 | 83500 | 0.0932 |
1.2456 | 84000 | 0.0873 |
1.2530 | 84500 | 0.0691 |
1.2604 | 85000 | 0.0609 |
1.2678 | 85500 | 0.0568 |
1.2752 | 86000 | 0.0797 |
1.2826 | 86500 | 0.0968 |
1.2900 | 87000 | 0.1113 |
1.2974 | 87500 | 0.0936 |
1.3049 | 88000 | 0.091 |
1.3123 | 88500 | 0.0482 |
1.3197 | 89000 | 0.0898 |
1.3271 | 89500 | 0.0766 |
1.3345 | 90000 | 0.0859 |
1.3419 | 90500 | 0.0851 |
1.3493 | 91000 | 0.0695 |
1.3568 | 91500 | 0.0881 |
1.3642 | 92000 | 0.1095 |
1.3716 | 92500 | 0.0676 |
1.3790 | 93000 | 0.094 |
1.3864 | 93500 | 0.0986 |
1.3938 | 94000 | 0.0844 |
1.4012 | 94500 | 0.0929 |
1.4087 | 95000 | 0.0783 |
1.4161 | 95500 | 0.0963 |
1.4235 | 96000 | 0.1003 |
1.4309 | 96500 | 0.0817 |
1.4383 | 97000 | 0.0754 |
1.4457 | 97500 | 0.0858 |
1.4531 | 98000 | 0.0746 |
1.4606 | 98500 | 0.0916 |
1.4680 | 99000 | 0.0738 |
1.4754 | 99500 | 0.0778 |
1.4828 | 100000 | 0.0897 |
1.4902 | 100500 | 0.1028 |
1.4976 | 101000 | 0.0914 |
1.5050 | 101500 | 0.0771 |
1.5125 | 102000 | 0.0716 |
1.5199 | 102500 | 0.1127 |
1.5273 | 103000 | 0.0785 |
1.5347 | 103500 | 0.0868 |
1.5421 | 104000 | 0.118 |
1.5495 | 104500 | 0.0838 |
1.5569 | 105000 | 0.0963 |
1.5644 | 105500 | 0.0579 |
1.5718 | 106000 | 0.0738 |
1.5792 | 106500 | 0.1182 |
1.5866 | 107000 | 0.1025 |
1.5940 | 107500 | 0.0747 |
1.6014 | 108000 | 0.0604 |
1.6088 | 108500 | 0.0607 |
1.6163 | 109000 | 0.0794 |
1.6237 | 109500 | 0.0793 |
1.6311 | 110000 | 0.084 |
1.6385 | 110500 | 0.1315 |
1.6459 | 111000 | 0.0782 |
1.6533 | 111500 | 0.0724 |
1.6607 | 112000 | 0.0864 |
1.6681 | 112500 | 0.0791 |
1.6756 | 113000 | 0.0772 |
1.6830 | 113500 | 0.0923 |
1.6904 | 114000 | 0.0897 |
1.6978 | 114500 | 0.0833 |
1.7052 | 115000 | 0.0819 |
1.7126 | 115500 | 0.0695 |
1.7200 | 116000 | 0.0919 |
1.7275 | 116500 | 0.074 |
1.7349 | 117000 | 0.0893 |
1.7423 | 117500 | 0.1042 |
1.7497 | 118000 | 0.0648 |
1.7571 | 118500 | 0.0965 |
1.7645 | 119000 | 0.0634 |
1.7719 | 119500 | 0.0705 |
1.7794 | 120000 | 0.0928 |
1.7868 | 120500 | 0.0817 |
1.7942 | 121000 | 0.0756 |
1.8016 | 121500 | 0.0769 |
1.8090 | 122000 | 0.0877 |
1.8164 | 122500 | 0.0697 |
1.8238 | 123000 | 0.1095 |
1.8313 | 123500 | 0.1056 |
1.8387 | 124000 | 0.0931 |
1.8461 | 124500 | 0.0772 |
1.8535 | 125000 | 0.0867 |
1.8609 | 125500 | 0.0706 |
1.8683 | 126000 | 0.091 |
1.8757 | 126500 | 0.0751 |
1.8832 | 127000 | 0.0732 |
1.8906 | 127500 | 0.0615 |
1.8980 | 128000 | 0.0947 |
1.9054 | 128500 | 0.1067 |
1.9128 | 129000 | 0.0692 |
1.9202 | 129500 | 0.064 |
1.9276 | 130000 | 0.109 |
1.9351 | 130500 | 0.0843 |
1.9425 | 131000 | 0.0897 |
1.9499 | 131500 | 0.0999 |
1.9573 | 132000 | 0.0866 |
1.9647 | 132500 | 0.083 |
1.9721 | 133000 | 0.0859 |
1.9795 | 133500 | 0.0761 |
1.9870 | 134000 | 0.1089 |
1.9944 | 134500 | 0.1053 |
2.0018 | 135000 | 0.0581 |
2.0092 | 135500 | 0.0781 |
2.0166 | 136000 | 0.1286 |
2.0240 | 136500 | 0.1309 |
2.0314 | 137000 | 0.0476 |
2.0388 | 137500 | 0.0695 |
2.0463 | 138000 | 0.0746 |
2.0537 | 138500 | 0.063 |
2.0611 | 139000 | 0.0816 |
2.0685 | 139500 | 0.0821 |
2.0759 | 140000 | 0.0671 |
2.0833 | 140500 | 0.0865 |
2.0907 | 141000 | 0.0638 |
2.0982 | 141500 | 0.0803 |
2.1056 | 142000 | 0.0872 |
2.1130 | 142500 | 0.0968 |
2.1204 | 143000 | 0.1052 |
2.1278 | 143500 | 0.0554 |
2.1352 | 144000 | 0.1057 |
2.1426 | 144500 | 0.0565 |
2.1501 | 145000 | 0.0798 |
2.1575 | 145500 | 0.098 |
2.1649 | 146000 | 0.0832 |
2.1723 | 146500 | 0.067 |
2.1797 | 147000 | 0.0604 |
2.1871 | 147500 | 0.0808 |
2.1945 | 148000 | 0.0921 |
2.2020 | 148500 | 0.0767 |
2.2094 | 149000 | 0.0856 |
2.2168 | 149500 | 0.0966 |
2.2242 | 150000 | 0.0643 |
2.2316 | 150500 | 0.068 |
2.2390 | 151000 | 0.1007 |
2.2464 | 151500 | 0.0765 |
2.2539 | 152000 | 0.0662 |
2.2613 | 152500 | 0.067 |
2.2687 | 153000 | 0.0547 |
2.2761 | 153500 | 0.0833 |
2.2835 | 154000 | 0.1087 |
2.2909 | 154500 | 0.0868 |
2.2983 | 155000 | 0.0836 |
2.3058 | 155500 | 0.063 |
2.3132 | 156000 | 0.0459 |
2.3206 | 156500 | 0.0771 |
2.3280 | 157000 | 0.0856 |
2.3354 | 157500 | 0.0513 |
2.3428 | 158000 | 0.0584 |
2.3502 | 158500 | 0.0817 |
2.3577 | 159000 | 0.0948 |
2.3651 | 159500 | 0.0945 |
2.3725 | 160000 | 0.0746 |
2.3799 | 160500 | 0.0923 |
2.3873 | 161000 | 0.0933 |
2.3947 | 161500 | 0.08 |
2.4021 | 162000 | 0.1343 |
2.4095 | 162500 | 0.0699 |
2.4170 | 163000 | 0.0861 |
2.4244 | 163500 | 0.0811 |
2.4318 | 164000 | 0.0671 |
2.4392 | 164500 | 0.0877 |
2.4466 | 165000 | 0.0741 |
2.4540 | 165500 | 0.0834 |
2.4614 | 166000 | 0.0966 |
2.4689 | 166500 | 0.0739 |
2.4763 | 167000 | 0.0916 |
2.4837 | 167500 | 0.087 |
2.4911 | 168000 | 0.0974 |
2.4985 | 168500 | 0.0876 |
2.5059 | 169000 | 0.0954 |
2.5133 | 169500 | 0.0936 |
2.5208 | 170000 | 0.0866 |
2.5282 | 170500 | 0.0789 |
2.5356 | 171000 | 0.0932 |
2.5430 | 171500 | 0.094 |
2.5504 | 172000 | 0.0897 |
2.5578 | 172500 | 0.08 |
2.5652 | 173000 | 0.0664 |
2.5727 | 173500 | 0.0807 |
2.5801 | 174000 | 0.1157 |
2.5875 | 174500 | 0.1272 |
2.5949 | 175000 | 0.0843 |
2.6023 | 175500 | 0.067 |
2.6097 | 176000 | 0.084 |
2.6171 | 176500 | 0.0848 |
2.6246 | 177000 | 0.0805 |
2.6320 | 177500 | 0.0828 |
2.6394 | 178000 | 0.1059 |
2.6468 | 178500 | 0.0912 |
2.6542 | 179000 | 0.0683 |
2.6616 | 179500 | 0.0754 |
2.6690 | 180000 | 0.0844 |
2.6765 | 180500 | 0.0824 |
2.6839 | 181000 | 0.0729 |
2.6913 | 181500 | 0.0771 |
2.6987 | 182000 | 0.0993 |
2.7061 | 182500 | 0.0895 |
2.7135 | 183000 | 0.0706 |
2.7209 | 183500 | 0.0731 |
2.7284 | 184000 | 0.0682 |
2.7358 | 184500 | 0.0775 |
2.7432 | 185000 | 0.0956 |
2.7506 | 185500 | 0.0801 |
2.7580 | 186000 | 0.106 |
2.7654 | 186500 | 0.079 |
2.7728 | 187000 | 0.0636 |
2.7802 | 187500 | 0.0819 |
2.7877 | 188000 | 0.0763 |
2.7951 | 188500 | 0.0963 |
2.8025 | 189000 | 0.0714 |
2.8099 | 189500 | 0.0721 |
2.8173 | 190000 | 0.0599 |
2.8247 | 190500 | 0.0998 |
2.8321 | 191000 | 0.0629 |
2.8396 | 191500 | 0.1043 |
2.8470 | 192000 | 0.0973 |
2.8544 | 192500 | 0.1069 |
2.8618 | 193000 | 0.0557 |
2.8692 | 193500 | 0.07 |
2.8766 | 194000 | 0.1252 |
2.8840 | 194500 | 0.0801 |
2.8915 | 195000 | 0.0759 |
2.8989 | 195500 | 0.105 |
2.9063 | 196000 | 0.0806 |
2.9137 | 196500 | 0.0737 |
2.9211 | 197000 | 0.0841 |
2.9285 | 197500 | 0.1031 |
2.9359 | 198000 | 0.0828 |
2.9434 | 198500 | 0.0842 |
2.9508 | 199000 | 0.083 |
2.9582 | 199500 | 0.0745 |
2.9656 | 200000 | 0.0946 |
2.9730 | 200500 | 0.0802 |
2.9804 | 201000 | 0.0847 |
2.9878 | 201500 | 0.0991 |
2.9953 | 202000 | 0.0747 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.0
- Transformers: 4.43.3
- PyTorch: 2.3.0+cu121
- Accelerate: 0.33.0
- Datasets: 3.2.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
- Downloads last month
- 8
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for agentlans/deberta-v3-base-zyda-2-v2
Base model
microsoft/deberta-v3-base
Finetuned
agentlans/deberta-v3-base-zyda-2