File size: 4,083 Bytes
e99f142 5efd264 e99f142 18a2d8b 5efd264 18a2d8b e99f142 18a2d8b e99f142 18a2d8b e99f142 18a2d8b 390e56c 18a2d8b e99f142 18a2d8b e99f142 18a2d8b e99f142 18a2d8b e99f142 18a2d8b e99f142 18a2d8b e99f142 18a2d8b e99f142 18a2d8b e99f142 4c6abf8 9c2d4d3 789a72d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
- dpr
- bn
- multilingual
widget:
- source_sentence: "আমি বাংলায় গান গাই"
sentences:
- "I sing in Bangla"
- "I sing in Bengali"
- "I sing in English"
- "আমি গান গাই না "
example_title: "Singing"
---
# `s-xlmr-bn`
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like **clustering** or **semantic search**.
<!--- Describe your model here -->
## Model Details
- Model name: s-xlmr-bn
- Model version: 1.0
- Architecture: Sentence Transformer
- Language: Multilingual ( fine-tuned for Bengali Language)
- Base Models:
- [paraphrase-distilroberta-base-v2](https://huggingface.co/sentence-transformers/paraphrase-distilroberta-base-v2) [Teacher Model]
- [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) [Student Model]
## Training
The model was fine-tuned using **Multilingual Knowledge Distillation** method. We took `paraphrase-distilroberta-base-v2` as the teacher model and `xlm-roberta-large` as the student model.

## Intended Use:
- **Primary Use Case:** Semantic similarity, clustering, and semantic searches
- **Potential Use Cases:** Document retrieval, information retrieval, recommendation systems, chatbot systems , FAQ system
## Usage
### Using Sentence-Transformers
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["I sing in bengali", "আমি বাংলায় গান গাই"]
model = SentenceTransformer('afschowdhury/s-xlmr-bn')
embeddings = model.encode(sentences)
print(embeddings)
```
### Using HuggingFace Transformers
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ["I sing in bengali", "আমি বাংলায় গান গাই"]
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('afschowdhury/s-xlmr-bn')
model = AutoModel.from_pretrained('afschowdhury/s-xlmr-bn')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
### Point of Contact
**Asif Faisal Chowdhury**
E-mail: [[email protected]](mailto:[email protected]) | Linked-in: [afschowdhury](https://www.linkedin.com/in/afschowdhury) |