afschowdhury commited on
Commit
18a2d8b
·
1 Parent(s): e99f142

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +50 -64
README.md CHANGED
@@ -1,20 +1,53 @@
1
  ---
2
  pipeline_tag: sentence-similarity
3
  tags:
4
- - sentence-transformers
5
- - feature-extraction
6
- - sentence-similarity
7
- - transformers
8
-
 
 
 
 
 
 
 
 
9
  ---
10
 
11
- # {MODEL_NAME}
12
 
13
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
14
 
15
  <!--- Describe your model here -->
16
 
17
- ## Usage (Sentence-Transformers)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
 
19
  Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
20
 
@@ -26,16 +59,15 @@ Then you can use the model like this:
26
 
27
  ```python
28
  from sentence_transformers import SentenceTransformer
29
- sentences = ["This is an example sentence", "Each sentence is converted"]
30
 
31
- model = SentenceTransformer('{MODEL_NAME}')
32
  embeddings = model.encode(sentences)
33
  print(embeddings)
34
  ```
35
 
 
36
 
37
-
38
- ## Usage (HuggingFace Transformers)
39
  Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
40
 
41
  ```python
@@ -51,11 +83,11 @@ def mean_pooling(model_output, attention_mask):
51
 
52
 
53
  # Sentences we want sentence embeddings for
54
- sentences = ['This is an example sentence', 'Each sentence is converted']
55
 
56
  # Load model from HuggingFace Hub
57
- tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
58
- model = AutoModel.from_pretrained('{MODEL_NAME}')
59
 
60
  # Tokenize sentences
61
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
@@ -71,57 +103,11 @@ print("Sentence embeddings:")
71
  print(sentence_embeddings)
72
  ```
73
 
74
-
75
-
76
- ## Evaluation Results
77
-
78
- <!--- Describe how your model was evaluated -->
79
-
80
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
81
-
82
-
83
- ## Training
84
- The model was trained with the parameters:
85
-
86
- **DataLoader**:
87
-
88
- `torch.utils.data.dataloader.DataLoader` of length 15718 with parameters:
89
- ```
90
- {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
91
- ```
92
-
93
- **Loss**:
94
-
95
- `sentence_transformers.losses.MSELoss.MSELoss`
96
-
97
- Parameters of the fit()-Method:
98
- ```
99
- {
100
- "epochs": 3,
101
- "evaluation_steps": 0,
102
- "evaluator": "NoneType",
103
- "max_grad_norm": 1,
104
- "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
105
- "optimizer_params": {
106
- "eps": 1e-06,
107
- "lr": 2e-05
108
- },
109
- "scheduler": "WarmupLinear",
110
- "steps_per_epoch": null,
111
- "warmup_steps": 4715,
112
- "weight_decay": 0.01
113
- }
114
- ```
115
-
116
-
117
  ## Full Model Architecture
 
118
  ```
119
  SentenceTransformer(
120
- (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
121
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
122
  )
123
- ```
124
-
125
- ## Citing & Authors
126
-
127
- <!--- Describe where people can find more information -->
 
1
  ---
2
  pipeline_tag: sentence-similarity
3
  tags:
4
+ - sentence-transformers
5
+ - feature-extraction
6
+ - sentence-similarity
7
+ - transformers
8
+ - dpr
9
+ widget:
10
+ - source_sentence: "আমি বাংলায় গান গাই"
11
+ sentences:
12
+ - "I sing in Bangla"
13
+ - "I sing in Bengali"
14
+ - "I sing in English"
15
+ - "আমি গান গাই না "
16
+ example_title: "Singing"
17
  ---
18
 
19
+ # `s-xlmr-bn`
20
 
21
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like **clustering** or **semantic search**.
22
 
23
  <!--- Describe your model here -->
24
 
25
+ ## Model Details
26
+
27
+ - Model name: s-xlmr-bn
28
+ - Model version: 1.0
29
+ - Architecture: Sentence Transformer
30
+ - Language: Multilingual ( fine-tuned for Bengali Language)
31
+ - Base Models:
32
+ - [paraphrase-distilroberta-base-v2](https://www.SBERT.net) [Teacher Model]
33
+ - [xlm-roberta-large](https://www.SBERT.net) [Student Model]
34
+
35
+ ## Training
36
+
37
+ The model was fine-tuned using **Multilingual Knowledge Distillation** method. We took `paraphrase-distilroberta-base-v2` as the teacher model and `xlm-roberta-large` as the student model.
38
+
39
+
40
+
41
+ ![image](https://i.ibb.co/8Xrgnfr/sentence-transformer-model.png)
42
+
43
+ ## Intended Use:
44
+
45
+ - **Primary Use Case:** Semantic similarity, clustering, and semantic searches
46
+ - **Potential Use Cases:** Document retrieval, information retrieval, recommendation systems, chatbot systems , FAQ system
47
+
48
+ ## Usage
49
+
50
+ ### Using Sentence-Transformers
51
 
52
  Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
53
 
 
59
 
60
  ```python
61
  from sentence_transformers import SentenceTransformer
62
+ sentences = ["I sing in bengali", "আমি বাংলায় গান গাই"]
63
 
64
+ model = SentenceTransformer('afschowdhury/s-xlmr-bn')
65
  embeddings = model.encode(sentences)
66
  print(embeddings)
67
  ```
68
 
69
+ ### Using HuggingFace Transformers
70
 
 
 
71
  Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
72
 
73
  ```python
 
83
 
84
 
85
  # Sentences we want sentence embeddings for
86
+ sentences = ["I sing in bengali", "আমি বাংলায় গান গাই"]
87
 
88
  # Load model from HuggingFace Hub
89
+ tokenizer = AutoTokenizer.from_pretrained('afschowdhury/s-xlmr-bn')
90
+ model = AutoModel.from_pretrained('afschowdhury/s-xlmr-bn')
91
 
92
  # Tokenize sentences
93
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
 
103
  print(sentence_embeddings)
104
  ```
105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
106
  ## Full Model Architecture
107
+
108
  ```
109
  SentenceTransformer(
110
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
111
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
112
  )
113
+ ```