afsagag's picture
Update README.md
02c146c verified
---
library_name: transformers
license: apache-2.0
base_model: t5-base
tags:
- text2text-generation
- music
- spotify
- audio-features
- t5
language:
- en
datasets:
- custom
metrics:
- mae
- mse
- correlation
---
# T5 Spotify Features Generator
A fine-tuned T5-base model that generates Spotify audio features from natural language music descriptions.
## Model Details
### Model Description
This model converts natural language descriptions of music preferences into Spotify audio feature values. For example, "energetic dance music for a party" becomes `"danceability": 0.9, "energy": 0.9, "valence": 0.9`.
- **Developed by:** afsagag
- **Model type:** Text-to-Text Generation (T5)
- **Language(s):** English
- **License:** Apache-2.0
- **Finetuned from model:** [t5-base](https://huggingface.co/t5-base)
### Model Sources
- **Repository:** https://huggingface.co/afsagag/t5-spotify-features-generator
## Uses
### Direct Use
Generate Spotify audio features from music descriptions for:
- Music recommendation systems
- Playlist generation
- Music discovery applications
- Audio feature prediction research
```python
from transformers import T5ForConditionalGeneration, T5Tokenizer
import torch
# Load model and tokenizer
model = T5ForConditionalGeneration.from_pretrained("afsagag/t5-spotify-features-generator")
tokenizer = T5Tokenizer.from_pretrained("afsagag/t5-spotify-features-generator")
def generate_spotify_features(prompt, model, tokenizer):
input_text = f"prompt: {prompt}"
input_ids = tokenizer(input_text, return_tensors="pt", max_length=256, truncation=True).input_ids
with torch.no_grad():
outputs = model.generate(
input_ids,
max_length=256,
num_beams=4,
early_stopping=True,
do_sample=False,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id
)
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
return result
# Example usage
prompt = "I need energetic dance music for a party"
features = generate_spotify_features(prompt, model, tokenizer)
print(features) # Output: "danceability": 0.9, "energy": 0.9, "valence": 0.9
```
### Out-of-Scope Use
- Generating actual audio or music files
- Non-English music descriptions (model trained on English only)
- Precise music recommendation without human oversight
- Applications requiring guaranteed JSON format output
## Bias, Risks, and Limitations
- **Training Data Bias:** Reflects patterns in the training dataset, may not represent all musical styles or cultural contexts
- **JSON Format Issues:** May occasionally generate incomplete JSON objects
- **Subjective Features:** Audio features like "valence" and "energy" are subjective and may not align with all listeners' perceptions
- **Western Music Bias:** Training focused on Western musical concepts and terminology
### Recommendations
- Validate generated features against expected ranges
- Use as a starting point rather than definitive feature values
- Consider cultural and stylistic diversity when applying to diverse music catalogs
- Implement post-processing to ensure valid JSON output if required
## Training Details
### Training Data
Custom dataset of 4,206 examples pairing natural language music descriptions with Spotify audio features:
- **Training set:** 3,364 examples
- **Validation set:** 421 examples
- **Test set:** 421 examples
### Training Procedure
#### Training Hyperparameters
- **Training epochs:** 5
- **Learning rate:** 2e-4
- **Batch size:** 32 (train), 16 (eval)
- **Gradient accumulation steps:** 2
- **LR scheduler:** Cosine with 5% warmup
- **Max sequence length:** 256 tokens
- **Training regime:** bf16 mixed precision
#### Speeds, Sizes, Times
- **Training time:** ~58 minutes
- **Final training loss:** 0.5579
- **Model size:** ~892MB
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
Same distribution as training data: natural language music descriptions paired with Spotify audio features.
#### Metrics
- Mean Absolute Error (MAE) between predicted and actual feature values
- Mean Squared Error (MSE) for regression accuracy
- Pearson correlation coefficients for individual features
- Valid JSON ratio for output format correctness
### Results
The model demonstrates strong semantic understanding of musical concepts:
| Prompt | Generated Features |
|--------|-------------------|
| "I need energetic dance music for a party" | `"danceability": 0.9, "energy": 0.9, "valence": 0.9` |
| "Play calm acoustic songs for studying" | `"acousticness": 0.8, "energy": 0.2, "valence": 0.2` |
| "Upbeat music for working out" | `"danceability": 0.7, "energy": 0.8, "valence": 0.7` |
| "Relaxing instrumental background music" | `"acousticness": 0.3, "energy": 0.2, "instrumentalness": 0.8, "valence": 0.2` |
| "Happy pop music for driving" | `"danceability": 0.8, "energy": 0.8, "valence": 0.8` |
## Technical Specifications
### Model Architecture and Objective
- **Base Architecture:** T5 (Text-To-Text Transfer Transformer)
- **Model Size:** t5-base (220M parameters)
- **Objective:** Sequence-to-sequence generation of audio features from text descriptions
- **Input Format:** `"prompt: {natural_language_description}"`
- **Output Format:** JSON-style audio feature values
### Compute Infrastructure
#### Hardware
- GPU with CUDA support
- Mixed precision training (bf16)
#### Software
- PyTorch with CUDA
- Transformers library
- Datasets library for data processing
## Spotify Audio Features Reference
The model generates these Spotify audio features:
- **danceability** (0.0-1.0): How suitable a track is for dancing
- **energy** (0.0-1.0): Perceptual measure of intensity and power
- **valence** (0.0-1.0): Musical positivity (happy vs sad)
- **acousticness** (0.0-1.0): Confidence measure of acoustic nature
- **instrumentalness** (0.0-1.0): Predicts absence of vocals
- **speechiness** (0.0-1.0): Presence of spoken words
- **liveness** (0.0-1.0): Presence of live audience
- **loudness** (dB): Overall loudness, typically -60 to 0 dB
- **tempo** (BPM): Estimated beats per minute
- **duration_ms**: Track duration in milliseconds
- **key** (0-11): Musical key (C=0, C♯/D♭=1, etc.)
- **mode** (0-1): Modality (0=minor, 1=major)
- **time_signature** (3-7): Time signature
- **popularity** (0-100): Spotify popularity score
## Citation
```bibtex
@misc{t5-spotify-features-generator,
author = {afsagag},
title = {T5 Spotify Features Generator: Fine-tuned T5 for Music Feature Prediction from Natural Language},
year = {2025},
publisher = {Hugging Face},
howpublished = {\url{https://huggingface.co/afsagag/t5-spotify-features-generator}}
}
```
## Model Card Authors
afsagag
## Model Card Contact
Contact through Hugging Face profile: [@afsagag](https://huggingface.co/afsagag)