|
import sys |
|
import numpy as np |
|
import streamlit as st |
|
from PIL import Image |
|
from omegaconf import OmegaConf |
|
from einops import repeat |
|
from main import instantiate_from_config |
|
from streamlit_drawable_canvas import st_canvas |
|
import torch |
|
|
|
|
|
from ldm.models.diffusion.ddim import DDIMSampler |
|
|
|
|
|
MAX_SIZE = 640 |
|
|
|
|
|
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker |
|
from transformers import AutoFeatureExtractor |
|
from imwatermark import WatermarkEncoder |
|
import cv2 |
|
|
|
safety_model_id = "CompVis/stable-diffusion-safety-checker" |
|
safety_feature_extractor = AutoFeatureExtractor.from_pretrained(safety_model_id) |
|
safety_checker = StableDiffusionSafetyChecker.from_pretrained(safety_model_id) |
|
wm = "StableDiffusionV1-Inpainting" |
|
wm_encoder = WatermarkEncoder() |
|
wm_encoder.set_watermark('bytes', wm.encode('utf-8')) |
|
|
|
def numpy_to_pil(images): |
|
""" |
|
Convert a numpy image or a batch of images to a PIL image. |
|
""" |
|
if images.ndim == 3: |
|
images = images[None, ...] |
|
images = (images * 255).round().astype("uint8") |
|
pil_images = [Image.fromarray(image) for image in images] |
|
|
|
return pil_images |
|
|
|
def put_watermark(img): |
|
if wm_encoder is not None: |
|
img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) |
|
img = wm_encoder.encode(img, 'dwtDct') |
|
img = Image.fromarray(img[:, :, ::-1]) |
|
return img |
|
|
|
def check_safety(x_image): |
|
safety_checker_input = safety_feature_extractor(numpy_to_pil(x_image), return_tensors="pt") |
|
x_checked_image, has_nsfw_concept = safety_checker(images=x_image, clip_input=safety_checker_input.pixel_values) |
|
assert x_checked_image.shape[0] == len(has_nsfw_concept) |
|
return x_checked_image, has_nsfw_concept |
|
|
|
|
|
@st.cache(allow_output_mutation=True) |
|
def initialize_model(config, ckpt): |
|
config = OmegaConf.load(config) |
|
model = instantiate_from_config(config.model) |
|
|
|
model.load_state_dict(torch.load(ckpt)["state_dict"], strict=False) |
|
|
|
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") |
|
model = model.to(device) |
|
sampler = DDIMSampler(model) |
|
|
|
return sampler |
|
|
|
|
|
def make_batch_sd( |
|
image, |
|
mask, |
|
txt, |
|
device, |
|
num_samples=1): |
|
image = np.array(image.convert("RGB")) |
|
image = image[None].transpose(0,3,1,2) |
|
image = torch.from_numpy(image).to(dtype=torch.float32)/127.5-1.0 |
|
|
|
mask = np.array(mask.convert("L")) |
|
mask = mask.astype(np.float32)/255.0 |
|
mask = mask[None,None] |
|
mask[mask < 0.5] = 0 |
|
mask[mask >= 0.5] = 1 |
|
mask = torch.from_numpy(mask) |
|
|
|
masked_image = image * (mask < 0.5) |
|
|
|
batch = { |
|
"image": repeat(image.to(device=device), "1 ... -> n ...", n=num_samples), |
|
"txt": num_samples * [txt], |
|
"mask": repeat(mask.to(device=device), "1 ... -> n ...", n=num_samples), |
|
"masked_image": repeat(masked_image.to(device=device), "1 ... -> n ...", n=num_samples), |
|
} |
|
return batch |
|
|
|
|
|
def inpaint(sampler, image, mask, prompt, seed, scale, ddim_steps, num_samples=1, w=512, h=512): |
|
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") |
|
model = sampler.model |
|
|
|
prng = np.random.RandomState(seed) |
|
start_code = prng.randn(num_samples, 4, h//8, w//8) |
|
start_code = torch.from_numpy(start_code).to(device=device, dtype=torch.float32) |
|
|
|
with torch.no_grad(): |
|
with torch.autocast("cuda"): |
|
batch = make_batch_sd(image, mask, txt=prompt, device=device, num_samples=num_samples) |
|
|
|
c = model.cond_stage_model.encode(batch["txt"]) |
|
|
|
c_cat = list() |
|
for ck in model.concat_keys: |
|
cc = batch[ck].float() |
|
if ck != model.masked_image_key: |
|
bchw = [num_samples, 4, h//8, w//8] |
|
cc = torch.nn.functional.interpolate(cc, size=bchw[-2:]) |
|
else: |
|
cc = model.get_first_stage_encoding(model.encode_first_stage(cc)) |
|
c_cat.append(cc) |
|
c_cat = torch.cat(c_cat, dim=1) |
|
|
|
|
|
cond={"c_concat": [c_cat], "c_crossattn": [c]} |
|
|
|
|
|
uc_cross = model.get_unconditional_conditioning(num_samples, "") |
|
uc_full = {"c_concat": [c_cat], "c_crossattn": [uc_cross]} |
|
|
|
shape = [model.channels, h//8, w//8] |
|
samples_cfg, intermediates = sampler.sample( |
|
ddim_steps, |
|
num_samples, |
|
shape, |
|
cond, |
|
verbose=False, |
|
eta=1.0, |
|
unconditional_guidance_scale=scale, |
|
unconditional_conditioning=uc_full, |
|
x_T=start_code, |
|
) |
|
x_samples_ddim = model.decode_first_stage(samples_cfg) |
|
|
|
result = torch.clamp((x_samples_ddim+1.0)/2.0, |
|
min=0.0, max=1.0) |
|
|
|
result = result.cpu().numpy().transpose(0,2,3,1) |
|
result, has_nsfw_concept = check_safety(result) |
|
result = result*255 |
|
|
|
result = [Image.fromarray(img.astype(np.uint8)) for img in result] |
|
result = [put_watermark(img) for img in result] |
|
return result |
|
|
|
|
|
def run(): |
|
st.title("Stable Diffusion Inpainting") |
|
|
|
sampler = initialize_model(sys.argv[1], sys.argv[2]) |
|
|
|
image = st.file_uploader("Image", ["jpg", "png"]) |
|
if image: |
|
image = Image.open(image) |
|
w, h = image.size |
|
print(f"loaded input image of size ({w}, {h})") |
|
if max(w, h) > MAX_SIZE: |
|
factor = MAX_SIZE / max(w, h) |
|
w = int(factor*w) |
|
h = int(factor*h) |
|
width, height = map(lambda x: x - x % 64, (w, h)) |
|
image = image.resize((width, height)) |
|
print(f"resized to ({width}, {height})") |
|
|
|
prompt = st.text_input("Prompt") |
|
|
|
seed = st.number_input("Seed", min_value=0, max_value=1000000, value=0) |
|
num_samples = st.number_input("Number of Samples", min_value=1, max_value=64, value=1) |
|
scale = st.slider("Scale", min_value=0.1, max_value=30.0, value=7.5, step=0.1) |
|
ddim_steps = st.slider("DDIM Steps", min_value=0, max_value=50, value=50, step=1) |
|
|
|
fill_color = "rgba(255, 255, 255, 0.0)" |
|
stroke_width = st.number_input("Brush Size", |
|
value=64, |
|
min_value=1, |
|
max_value=100) |
|
stroke_color = "rgba(255, 255, 255, 1.0)" |
|
bg_color = "rgba(0, 0, 0, 1.0)" |
|
drawing_mode = "freedraw" |
|
|
|
st.write("Canvas") |
|
st.caption("Draw a mask to inpaint, then click the 'Send to Streamlit' button (bottom left, with an arrow on it).") |
|
canvas_result = st_canvas( |
|
fill_color=fill_color, |
|
stroke_width=stroke_width, |
|
stroke_color=stroke_color, |
|
background_color=bg_color, |
|
background_image=image, |
|
update_streamlit=False, |
|
height=height, |
|
width=width, |
|
drawing_mode=drawing_mode, |
|
key="canvas", |
|
) |
|
if canvas_result: |
|
mask = canvas_result.image_data |
|
mask = mask[:, :, -1] > 0 |
|
if mask.sum() > 0: |
|
mask = Image.fromarray(mask) |
|
|
|
result = inpaint( |
|
sampler=sampler, |
|
image=image, |
|
mask=mask, |
|
prompt=prompt, |
|
seed=seed, |
|
scale=scale, |
|
ddim_steps=ddim_steps, |
|
num_samples=num_samples, |
|
h=height, w=width |
|
) |
|
st.write("Inpainted") |
|
for image in result: |
|
st.image(image) |
|
|
|
|
|
if __name__ == "__main__": |
|
run() |
|
|