File size: 7,920 Bytes
673ae14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import sys
import numpy as np
import streamlit as st
from PIL import Image
from omegaconf import OmegaConf
from einops import repeat
from main import instantiate_from_config
from streamlit_drawable_canvas import st_canvas
import torch


from ldm.models.diffusion.ddim import DDIMSampler


MAX_SIZE = 640

# load safety model
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from transformers import AutoFeatureExtractor
from imwatermark import WatermarkEncoder
import cv2

safety_model_id = "CompVis/stable-diffusion-safety-checker"
safety_feature_extractor = AutoFeatureExtractor.from_pretrained(safety_model_id)
safety_checker = StableDiffusionSafetyChecker.from_pretrained(safety_model_id)
wm = "StableDiffusionV1-Inpainting"
wm_encoder = WatermarkEncoder()
wm_encoder.set_watermark('bytes', wm.encode('utf-8'))

def numpy_to_pil(images):
    """
    Convert a numpy image or a batch of images to a PIL image.
    """
    if images.ndim == 3:
        images = images[None, ...]
    images = (images * 255).round().astype("uint8")
    pil_images = [Image.fromarray(image) for image in images]

    return pil_images

def put_watermark(img):
    if wm_encoder is not None:
        img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
        img = wm_encoder.encode(img, 'dwtDct')
        img = Image.fromarray(img[:, :, ::-1])
    return img

def check_safety(x_image):
    safety_checker_input = safety_feature_extractor(numpy_to_pil(x_image), return_tensors="pt")
    x_checked_image, has_nsfw_concept = safety_checker(images=x_image, clip_input=safety_checker_input.pixel_values)
    assert x_checked_image.shape[0] == len(has_nsfw_concept)
    return x_checked_image, has_nsfw_concept


@st.cache(allow_output_mutation=True)
def initialize_model(config, ckpt):
    config = OmegaConf.load(config)
    model = instantiate_from_config(config.model)

    model.load_state_dict(torch.load(ckpt)["state_dict"], strict=False)

    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
    model = model.to(device)
    sampler = DDIMSampler(model)

    return sampler


def make_batch_sd(
        image,
        mask,
        txt,
        device,
        num_samples=1):
    image = np.array(image.convert("RGB"))
    image = image[None].transpose(0,3,1,2)
    image = torch.from_numpy(image).to(dtype=torch.float32)/127.5-1.0

    mask = np.array(mask.convert("L"))
    mask = mask.astype(np.float32)/255.0
    mask = mask[None,None]
    mask[mask < 0.5] = 0
    mask[mask >= 0.5] = 1
    mask = torch.from_numpy(mask)

    masked_image = image * (mask < 0.5)

    batch = {
            "image": repeat(image.to(device=device), "1 ... -> n ...", n=num_samples),
            "txt": num_samples * [txt],
            "mask": repeat(mask.to(device=device), "1 ... -> n ...", n=num_samples),
            "masked_image": repeat(masked_image.to(device=device), "1 ... -> n ...", n=num_samples),
            }
    return batch


def inpaint(sampler, image, mask, prompt, seed, scale, ddim_steps, num_samples=1, w=512, h=512):
    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
    model = sampler.model

    prng = np.random.RandomState(seed)
    start_code = prng.randn(num_samples, 4, h//8, w//8)
    start_code = torch.from_numpy(start_code).to(device=device, dtype=torch.float32)

    with torch.no_grad():
        with torch.autocast("cuda"):
            batch = make_batch_sd(image, mask, txt=prompt, device=device, num_samples=num_samples)

            c = model.cond_stage_model.encode(batch["txt"])

            c_cat = list()
            for ck in model.concat_keys:
                cc = batch[ck].float()
                if ck != model.masked_image_key:
                    bchw = [num_samples, 4, h//8, w//8]
                    cc = torch.nn.functional.interpolate(cc, size=bchw[-2:])
                else:
                    cc = model.get_first_stage_encoding(model.encode_first_stage(cc))
                c_cat.append(cc)
            c_cat = torch.cat(c_cat, dim=1)

            # cond
            cond={"c_concat": [c_cat], "c_crossattn": [c]}

            # uncond cond
            uc_cross = model.get_unconditional_conditioning(num_samples, "")
            uc_full = {"c_concat": [c_cat], "c_crossattn": [uc_cross]}

            shape = [model.channels, h//8, w//8]
            samples_cfg, intermediates = sampler.sample(
                    ddim_steps,
                    num_samples,
                    shape,
                    cond,
                    verbose=False,
                    eta=1.0,
                    unconditional_guidance_scale=scale,
                    unconditional_conditioning=uc_full,
                    x_T=start_code,
            )
            x_samples_ddim = model.decode_first_stage(samples_cfg)

            result = torch.clamp((x_samples_ddim+1.0)/2.0,
                                 min=0.0, max=1.0)

            result = result.cpu().numpy().transpose(0,2,3,1)
            result, has_nsfw_concept = check_safety(result)
            result = result*255

    result = [Image.fromarray(img.astype(np.uint8)) for img in result]
    result = [put_watermark(img) for img in result]
    return result


def run():
    st.title("Stable Diffusion Inpainting")
    
    sampler = initialize_model(sys.argv[1], sys.argv[2])

    image = st.file_uploader("Image", ["jpg", "png"])
    if image:
        image = Image.open(image)
        w, h = image.size
        print(f"loaded input image of size ({w}, {h})")
        if max(w, h) > MAX_SIZE:
            factor = MAX_SIZE / max(w, h)
            w = int(factor*w)
            h = int(factor*h)
        width, height = map(lambda x: x - x % 64, (w, h))  # resize to integer multiple of 64
        image = image.resize((width, height))
        print(f"resized to ({width}, {height})")

        prompt = st.text_input("Prompt")

        seed = st.number_input("Seed", min_value=0, max_value=1000000, value=0)
        num_samples = st.number_input("Number of Samples", min_value=1, max_value=64, value=1)
        scale = st.slider("Scale", min_value=0.1, max_value=30.0, value=7.5, step=0.1)
        ddim_steps = st.slider("DDIM Steps", min_value=0, max_value=50, value=50, step=1)

        fill_color = "rgba(255, 255, 255, 0.0)"
        stroke_width = st.number_input("Brush Size",
                                       value=64,
                                       min_value=1,
                                       max_value=100)
        stroke_color = "rgba(255, 255, 255, 1.0)"
        bg_color = "rgba(0, 0, 0, 1.0)"
        drawing_mode = "freedraw"

        st.write("Canvas")
        st.caption("Draw a mask to inpaint, then click the 'Send to Streamlit' button (bottom left, with an arrow on it).")
        canvas_result = st_canvas(
            fill_color=fill_color,
            stroke_width=stroke_width,
            stroke_color=stroke_color,
            background_color=bg_color,
            background_image=image,
            update_streamlit=False,
            height=height,
            width=width,
            drawing_mode=drawing_mode,
            key="canvas",
        )
        if canvas_result:
            mask = canvas_result.image_data
            mask = mask[:, :, -1] > 0
            if mask.sum() > 0:
                mask = Image.fromarray(mask)

                result = inpaint(
                    sampler=sampler,
                    image=image,
                    mask=mask,
                    prompt=prompt,
                    seed=seed,
                    scale=scale,
                    ddim_steps=ddim_steps,
                    num_samples=num_samples,
                    h=height, w=width
                )
                st.write("Inpainted")
                for image in result:
                    st.image(image)


if __name__ == "__main__":
    run()