germeo-7b-laser / README.md
aari1995's picture
Adding Evaluation Results (#3)
5555ddd verified
|
raw
history blame
7.69 kB
---
language:
- de
license: apache-2.0
tags:
- hermeo
- laser
datasets:
- LeoLM/OpenSchnabeltier
pipeline_tag: conversational
model-index:
- name: germeo-7b-laser
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 60.75
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aari1995/germeo-7b-laser
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 82.81
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aari1995/germeo-7b-laser
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 60.57
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aari1995/germeo-7b-laser
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 53.83
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aari1995/germeo-7b-laser
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 75.61
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aari1995/germeo-7b-laser
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 43.37
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aari1995/germeo-7b-laser
name: Open LLM Leaderboard
---
(Evaluation WIP)
## Hermes + Leo + German Laser = Germeo
## Germeo-7B-Laser
A German-English understanding, but German-only speaking model merged from Hermeo-7B.
### Model details
**Merged from**: leo-mistral-hessianai-7b-chat and DPOpenHermes-7B-v2
**Model type**: Causal decoder-only transformer language model
**Languages**: German replies with English Understanding Capabilities
**Laser-Data**: LeoLM/OpenSchnabeltier
This is an early experiment on laser and its influence on language understanding. It generally improves the language understanding capabilities.
The hypothesis is that it degrades the probability of English replies and increasing those of German replies. The models internal German capabilities are boosted.
Will keep you updated..
### Acknowledgements:
I would like to thank everyone that participated in making this model and its training possible:
To [@malteos](https://huggingface.co/malteos) for hermeo
To [@cognitivecomputations](https://huggingface.co/cognitivecomputations) and Fernando Fernandes Neto for their implementation of LASER
To [@LeoLM](https://huggingface.co/LeoLM) and Björn for the OpenSchnabeltier dataset.
### Prompt format:
```python
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
# Convert prompt to tokens
prompt_template = """<|im_start|>system
Du bist ein hilfreicher Assistent.<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant"""
prompt = "Schreibe eine Stellenanzeige für Data Scientist bei AXA!"
final_prompt = prompt_template.format(prompt=prompt)
```
### German benchmarks
| **German tasks:** | **MMLU-DE** | **Hellaswag-DE** | **ARC-DE** |**Average** |
|-------------------------------|-------------|---------------|--------------|--------------|
| **Models / Few-shots:** | _(5 shots)_ | _(10 shots)_ | _(24 shots)_ | |
| _7B parameters_ | | | | |
| llama-2-7b | 0.400 | 0.513 | 0.381 | 0.431 |
| leo-hessianai-7b | 0.400 | 0.609 | 0.429 | 0.479 |
| bloom-6b4-clp-german | 0.274 | 0.550 | 0.351 | 0.392 |
| mistral-7b | **0.524** | 0.588 | 0.473 | 0.528 |
| leo-mistral-hessianai-7b | 0.481 | 0.663 | 0.485 | 0.543 |
| leo-mistral-hessianai-7b-chat | 0.458 | 0.617 | 0.465 | 0.513 |
| DPOpenHermes-7B-v2 | 0.517 | 0.603 | 0.515 | 0.545 |
| hermeo-7b | 0.511 | **0.668** | **0.528** | **0.569** |
| **germeo-7b-laser (this model)**| ? | ? | ? | ? |
| _13B parameters_ | | | | |
| llama-2-13b | 0.469 | 0.581 | 0.468 | 0.506 |
| leo-hessianai-13b | **0.486** | **0.658** | **0.509** | **0.551** |
| _70B parameters_ | | | | |
| llama-2-70b | 0.597 | 0.674 | 0.561 | 0.611 |
| leo-hessianai-70b | **0.653** | **0.721** | **0.600** | **0.658** |
Even though the model does not generate English text without being explicitly asked, performance on English Benchmarks is still up:
### English benchmarks
| **English tasks:** | **MMLU** | **Hellaswag** | **ARC** | **Average** |
|------------------------------------|-------------|---------------|--------------|-------------|
| **Models / Few-shots:** | _(5 shots)_ | _(10 shots)_ | _(24 shots)_ | |
| llama-2-7b | 0.466 | 0.786 | 0.530 | 0.594 |
| leolm-hessianai-7b | 0.423 | 0.759 | 0.522 | 0.568 |
| bloom-6b4-clp-german | 0.264 | 0.525 | 0.328 | 0.372 |
| mistral-7b | **0.635** | **0.832** | 0.607 | **0.691** |
| leolm-mistral-hessianai-7b | 0.550 | 0.777 | 0.518 | 0.615 |
| hermeo-7b | 0.601 | 0.821 | **0.620** | 0.681 |
| germeo-7b-laser (this model) | 0.601 | 0.828 | 0.608 | 0.679 |
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_aari1995__germeo-7b-laser)
| Metric |Value|
|---------------------------------|----:|
|Avg. |62.82|
|AI2 Reasoning Challenge (25-Shot)|60.75|
|HellaSwag (10-Shot) |82.81|
|MMLU (5-Shot) |60.57|
|TruthfulQA (0-shot) |53.83|
|Winogrande (5-shot) |75.61|
|GSM8k (5-shot) |43.37|