|
from flask import Flask, request, jsonify
|
|
import numpy as np
|
|
import sklearn
|
|
import pickle
|
|
|
|
model = pickle.load(open('model.pkl', 'rb'))
|
|
sc = pickle.load(open('standscaler.pkl', 'rb'))
|
|
ms = pickle.load(open('minmaxscaler.pkl', 'rb'))
|
|
application = Flask(__name__)
|
|
|
|
@application.route('/')
|
|
def ok():
|
|
return "Running!"
|
|
|
|
@application.route('/pred', methods=['POST'])
|
|
def predict():
|
|
N = request.form['Nitrogen']
|
|
P = request.form['Phosphorus']
|
|
K = request.form['Potassium']
|
|
temp = request.form['Temperature']
|
|
humidity = request.form['Humidity']
|
|
ph = request.form['Ph']
|
|
rainfall = request.form['Rainfall']
|
|
|
|
feature_list = [N, P, K, temp, humidity, ph, rainfall]
|
|
single_pred = np.array(feature_list).reshape(1, -1)
|
|
|
|
scaled_features = ms.transform(single_pred)
|
|
final_features = sc.transform(scaled_features)
|
|
prediction = model.predict(final_features)
|
|
|
|
crop_dict = {1: "Rice", 2: "Maize", 3: "Jute", 4: "Cotton", 5: "Coconut", 6: "Papaya", 7: "Orange",
|
|
8: "Apple", 9: "Muskmelon", 10: "Watermelon", 11: "Grapes", 12: "Mango", 13: "Banana",
|
|
14: "Pomegranate", 15: "Lentil", 16: "Blackgram", 17: "Mungbean", 18: "Mothbeans",
|
|
19: "Pigeonpeas", 20: "Kidneybeans", 21: "Chickpea", 22: "Coffee"}
|
|
|
|
|
|
if prediction[0] in crop_dict:
|
|
crop = crop_dict[prediction[0]]
|
|
else:
|
|
crop = 'NOT able to recommend'
|
|
return jsonify(crop)
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
application.run(host='0.0.0.0', port=5000, debug=True)
|
|
|