from flask import Flask, request, jsonify import numpy as np import sklearn import pickle model = pickle.load(open('model.pkl', 'rb')) sc = pickle.load(open('standscaler.pkl', 'rb')) ms = pickle.load(open('minmaxscaler.pkl', 'rb')) application = Flask(__name__) @application.route('/') def ok(): return "Running!" @application.route('/pred', methods=['POST']) def predict(): N = request.form['Nitrogen'] P = request.form['Phosphorus'] K = request.form['Potassium'] temp = request.form['Temperature'] humidity = request.form['Humidity'] ph = request.form['Ph'] rainfall = request.form['Rainfall'] feature_list = [N, P, K, temp, humidity, ph, rainfall] single_pred = np.array(feature_list).reshape(1, -1) scaled_features = ms.transform(single_pred) final_features = sc.transform(scaled_features) prediction = model.predict(final_features) crop_dict = {1: "Rice", 2: "Maize", 3: "Jute", 4: "Cotton", 5: "Coconut", 6: "Papaya", 7: "Orange", 8: "Apple", 9: "Muskmelon", 10: "Watermelon", 11: "Grapes", 12: "Mango", 13: "Banana", 14: "Pomegranate", 15: "Lentil", 16: "Blackgram", 17: "Mungbean", 18: "Mothbeans", 19: "Pigeonpeas", 20: "Kidneybeans", 21: "Chickpea", 22: "Coffee"} if prediction[0] in crop_dict: crop = crop_dict[prediction[0]] else: crop = 'NOT able to recommend' return jsonify(crop) # python main if __name__ == "__main__": application.run(host='0.0.0.0', port=5000, debug=True)