Model Card for Zamba2-1.2B
Zamba2-1.2B is a hybrid model composed of state-space (Mamba) and transformer blocks. It broadly follows the Zamba architecture which consists of a Mamba backbone alternating with shared transformer blocks (see diagram in Model Details). Zamba2-1.2B possesses three major improvements over Zamba1:
1.) Mamba1 blocks have been replaced with Mamba2 blocks.
2.) We apply a LoRA projector to each shared MLP and attention block, which allows the network to specialize at each invocation of the shared transformer layer across depth. LoRA enables us to add depth-specialization for only a minimal increase in total parameter count.
3.) We utilize rotary position embeddings in the shared attention layer.
Zamba2-1.2B differs from our 2.7B model in three ways:
1.) We have added rotary position embeddings
2.) A single shared transformer block (instead of two that we alternate between)
3.) Added LoRA projectors to attention blocks (instead of just a LoRA on the MLP block)
We found that while hybrid SSM-transformer models are perfectly capable of performing well without position embeddings, adding rotary embeddings to the shared attention block slightly improved performance. Secondly, we utilize a single attention block (instead of alternating between two independent transformer blocks) because this enables a higher flop count for the model at a given parameter budget and at smaller scales this becomes more important than the slightly faster latency.
Zamba2-1.2B uses the Mistral v0.1 tokenizer and was pre-trained on 3T tokens of text and code data sourced from open web-datasets, including Zyda. Subsequently, in a second phase, Zamba2-1.2B was annealed on a mixture of 100B high-quality tokens.
Note: this is a temporary HuggingFace implementation of Zamba2-1.2B. It may not yet be fully compatible with all frameworks and tools intended to interface with HuggingFace models.
A standalone Pytorch implementation of Zamba2-1.2B may be found here.
Quick start
Prerequisites
To download Zamba2-1.2B, install transformers
from source:
git clone https://github.com/huggingface/transformers.git
cd transformers && pip install .
To install dependencies necessary to run Mamba2 kernels, install mamba-ssm
from source (due to compatibility issues with PyTorch) as well as causal-conv1d
:
git clone https://github.com/state-spaces/mamba.git
cd mamba && git checkout v2.1.0 && pip install .
pip install causal-conv1d
You can run the model without using the optimized Mamba2 kernels, but it is not recommended as it will result in significantly higher latency and memory usage.
Inference
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("Zyphra/Zamba2-1.2B")
model = AutoModelForCausalLM.from_pretrained("Zyphra/Zamba2-1.2B", device_map="cuda", torch_dtype=torch.bfloat16)
input_text = "What factors contributed to the fall of the Roman Empire?"
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
outputs = model.generate(**input_ids, max_new_tokens=100)
print(tokenizer.decode(outputs[0]))
Model Details
Zamba2-1.2B utilizes and extends our original Zamba hybrid SSM-attention architecture. The core Zamba architecture consists of a backbone of Mamba layers interleaved with one or more shared attention layers. This attention has shared weights to minimize the parameter cost of the model. We find that concatenating the original model embeddings to the input to this attention block improves performance, likely due to better maintenance of information across depth. The Zamba2 architecture also applies LoRA projection matrices to the shared transformer blocks to gain some additional expressivity in each block and allow each shared block to specialize slightly to its own unique position while keeping the additional parameter overhead small.
![Zamba architecture](https://cdn-uploads.huggingface.co/production/uploads/65c05e75c084467acab2f84a/Vay6htbnBcySR3Z6NEgwj.png)
Performance
Zamba2-1.2B achieves leading and state-of-the-art performance among models of <2B parameters and is competitive with some models of significantly greater size. Moreover, due to its unique hybrid SSM architecture, Zamba2-1.2B achieves extremely low inference latency and rapid generation with a significantly smaller memory footprint than comparable transformer based models.
Zamba2-1.2B's high performance and small inference compute and memory footprint renders it an ideal generalist model for on-device applications.
![Zamba performance](https://cdn-uploads.huggingface.co/production/uploads/65bc13717c6ad1994b6619e9/7Japy8VaJzKaFEjJgtWBp.png)
![Zamba performance](https://cdn-uploads.huggingface.co/production/uploads/65c05e75c084467acab2f84a/Viwo3-bpYLFUu7cLIUFVv.png)
And memory overhead
![Zamba inference and memory cost](https://cdn-uploads.huggingface.co/production/uploads/65c05e75c084467acab2f84a/m0YUmAmiVnRg6l9m10CEt.png)
Notice
Zamba2-1.2B is a pretrained base model and therefore does not have any moderation mechanism and may output toxic or otherwise harmful language. In addition, one should not expect good instruct or chat performance, as this model was not fine-tuned for instruction following or chat.
- Downloads last month
- 14,137