Kenneth Hamilton's picture

Kenneth Hamilton PRO

ZennyKenny

AI & ML interests

Building and enablement @ montebello.ai Certified vibe coder

Recent Activity

View all activity

Organizations

scikit-learn's profile picture TorchGeo's profile picture Kornia AI's profile picture Blog-explorers's profile picture OpenLLM France's profile picture Team Tonic's profile picture ZeroGPU Explorers's profile picture Data is Better Together - Russian Language Team's profile picture The Nevsky Collective's profile picture Plan Communications's profile picture MLX Community's profile picture Social Post Explorers's profile picture Hugging Face Discord Community's profile picture Data Is Better Together Contributor's profile picture

ZennyKenny's activity

reacted to onekq's post with 🚀 about 10 hours ago
view post
Post
995
Introducing 🎉 OneSQL-v0.1🥳, our first text-to-SQL model based on Qwen2.5-Coder. This model has achieved an EX score of 63.33 on the BIRD leaderboard (https://bird-bench.github.io/).

The model family includes 7B and 32B,
onekq-ai/onesql-v01-qwen-67d8e3eb1611c5532bb90c5f
and can be also found on Ollama (https://ollama.com/onekq/OneSQL-v0.1-Qwen)

My goal is to make OneSQL the most usable open-weights model for text-to-SQL. I'm currently working on best practices to help users use this model the right away and avoid pitfalls. After that, I plan to train the next version to push for a higher EX score.

Enjoy this model and feel free to share comments/questions 🤗
  • 1 reply
·
New activity in bigcomputer/arena-annotation-progress about 14 hours ago

Expand IP dict

#27 opened about 14 hours ago by
ZennyKenny
replied to burtenshaw's post 5 days ago
reacted to burtenshaw's post with 🤗 5 days ago
view post
Post
1765
Here’s a notebook to make Gemma reason with GRPO & TRL. I made this whilst prepping the next unit of the reasoning course:

In this notebooks I combine together google’s model with some community tooling

- First, I load the model from the Hugging Face hub with transformers’s latest release for Gemma 3
- I use PEFT and bitsandbytes to get it running on Colab
- Then, I took Will Browns processing and reward functions to make reasoning chains from GSM8k
- Finally, I used TRL’s GRPOTrainer to train the model

Next step is to bring Unsloth AI in, then ship it in the reasoning course. Links to notebook below.

https://colab.research.google.com/drive/1Vkl69ytCS3bvOtV9_stRETMthlQXR4wX?usp=sharing
·
upvoted an article 6 days ago
view article
Article

Welcome Gemma 3: Google's all new multimodal, multilingual, long context open LLM

307
New activity in zero-gpu-explorers/README 9 days ago
reacted to mcpotato's post with 🤗 11 days ago
view post
Post
2399
Stoked to announce we've partnered with JFrog to continue improving safety on the Hub! 🐸

Their model scanner brings new scanning capabilities to the table, aimed at reducing alert fatigue.

More on that in our blog post: https://huggingface.co/blog/jfrog
  • 1 reply
·
reacted to fdaudens's post with 🔥 12 days ago
view post
Post
4071
AI will bring us "a country of yes-men on servers" instead of one of "Einsteins sitting in a data center" if we continue on current trends.

Must-read by @thomwolf deflating overblown AI promises and explaining what real scientific breakthroughs require.

https://thomwolf.io/blog/scientific-ai.html
  • 2 replies
·
reacted to albertvillanova's post with 🔥 12 days ago
view post
Post
3804
🚀 Big news for AI agents! With the latest release of smolagents, you can now securely execute Python code in sandboxed Docker or E2B environments. 🦾🔒

Here's why this is a game-changer for agent-based systems: 🧵👇

1️⃣ Security First 🔐
Running AI agents in unrestricted Python environments is risky! With sandboxing, your agents are isolated, preventing unintended file access, network abuse, or system modifications.

2️⃣ Deterministic & Reproducible Runs 📦
By running agents in containerized environments, you ensure that every execution happens in a controlled and predictable setting—no more environment mismatches or dependency issues!

3️⃣ Resource Control & Limits 🚦
Docker and E2B allow you to enforce CPU, memory, and execution time limits, so rogue or inefficient agents don’t spiral out of control.

4️⃣ Safer Code Execution in Production 🏭
Deploy AI agents confidently, knowing that any generated code runs in an ephemeral, isolated environment, protecting your host machine and infrastructure.

5️⃣ Easy to Integrate 🛠️
With smolagents, you can simply configure your agent to use Docker or E2B as its execution backend—no need for complex security setups!

6️⃣ Perfect for Autonomous AI Agents 🤖
If your AI agents generate and execute code dynamically, this is a must-have to avoid security pitfalls while enabling advanced automation.

⚡ Get started now: https://github.com/huggingface/smolagents

What will you build with smolagents? Let us know! 🚀💡
replied to their post 12 days ago
view reply

Actually the model I've used is a distill of LLaMa so it meets the criteria of Free as in Freedom. Shoutout rms.