MASR / transformers /docs /source /ko /tasks /image_classification.md
Yuvarraj's picture
Initial commit
a0db2f9
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
โš ๏ธ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜[[image-classification]]
[[open-in-colab]]
<Youtube id="tjAIM7BOYhw"/>
์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜๋Š” ์ด๋ฏธ์ง€์— ๋ ˆ์ด๋ธ” ๋˜๋Š” ํด๋ž˜์Šค๋ฅผ ํ• ๋‹นํ•ฉ๋‹ˆ๋‹ค. ํ…์ŠคํŠธ ๋˜๋Š” ์˜ค๋””์˜ค ๋ถ„๋ฅ˜์™€ ๋‹ฌ๋ฆฌ ์ž…๋ ฅ์€
์ด๋ฏธ์ง€๋ฅผ ๊ตฌ์„ฑํ•˜๋Š” ํ”ฝ์…€ ๊ฐ’์ž…๋‹ˆ๋‹ค. ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜์—๋Š” ์ž์—ฐ์žฌํ•ด ํ›„ ํ”ผํ•ด ๊ฐ์ง€, ๋†์ž‘๋ฌผ ๊ฑด๊ฐ• ๋ชจ๋‹ˆํ„ฐ๋ง, ์˜๋ฃŒ ์ด๋ฏธ์ง€์—์„œ ์งˆ๋ณ‘์˜ ์ง•ํ›„ ๊ฒ€์‚ฌ ์ง€์› ๋“ฑ
๋‹ค์–‘ํ•œ ์‘์šฉ ์‚ฌ๋ก€๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
์ด ๊ฐ€์ด๋“œ์—์„œ๋Š” ๋‹ค์Œ์„ ์„ค๋ช…ํ•ฉ๋‹ˆ๋‹ค:
1. [Food-101](https://huggingface.co/datasets/food101) ๋ฐ์ดํ„ฐ ์„ธํŠธ์—์„œ [ViT](model_doc/vit)๋ฅผ ๋ฏธ์„ธ ์กฐ์ •ํ•˜์—ฌ ์ด๋ฏธ์ง€์—์„œ ์‹ํ’ˆ ํ•ญ๋ชฉ์„ ๋ถ„๋ฅ˜ํ•ฉ๋‹ˆ๋‹ค.
2. ์ถ”๋ก ์„ ์œ„ํ•ด ๋ฏธ์„ธ ์กฐ์ • ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค.
<Tip>
์ด ํŠœํ† ๋ฆฌ์–ผ์—์„œ ์„ค๋ช…ํ•˜๋Š” ์ž‘์—…์€ ๋‹ค์Œ ๋ชจ๋ธ ์•„ํ‚คํ…์ฒ˜์— ์˜ํ•ด ์ง€์›๋ฉ๋‹ˆ๋‹ค:
<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->
[BEiT](../model_doc/beit), [BiT](../model_doc/bit), [ConvNeXT](../model_doc/convnext), [ConvNeXTV2](../model_doc/convnextv2), [CvT](../model_doc/cvt), [Data2VecVision](../model_doc/data2vec-vision), [DeiT](../model_doc/deit), [DiNAT](../model_doc/dinat), [EfficientFormer](../model_doc/efficientformer), [EfficientNet](../model_doc/efficientnet), [FocalNet](../model_doc/focalnet), [ImageGPT](../model_doc/imagegpt), [LeViT](../model_doc/levit), [MobileNetV1](../model_doc/mobilenet_v1), [MobileNetV2](../model_doc/mobilenet_v2), [MobileViT](../model_doc/mobilevit), [NAT](../model_doc/nat), [Perceiver](../model_doc/perceiver), [PoolFormer](../model_doc/poolformer), [RegNet](../model_doc/regnet), [ResNet](../model_doc/resnet), [SegFormer](../model_doc/segformer), [Swin Transformer](../model_doc/swin), [Swin Transformer V2](../model_doc/swinv2), [VAN](../model_doc/van), [ViT](../model_doc/vit), [ViT Hybrid](../model_doc/vit_hybrid), [ViTMSN](../model_doc/vit_msn)
<!--End of the generated tip-->
</Tip>
์‹œ์ž‘ํ•˜๊ธฐ ์ „์—, ํ•„์š”ํ•œ ๋ชจ๋“  ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๊ฐ€ ์„ค์น˜๋˜์–ด ์žˆ๋Š”์ง€ ํ™•์ธํ•˜์„ธ์š”:
```bash
pip install transformers datasets evaluate
```
Hugging Face ๊ณ„์ •์— ๋กœ๊ทธ์ธํ•˜์—ฌ ๋ชจ๋ธ์„ ์—…๋กœ๋“œํ•˜๊ณ  ์ปค๋ฎค๋‹ˆํ‹ฐ์— ๊ณต์œ ํ•˜๋Š” ๊ฒƒ์„ ๊ถŒ์žฅํ•ฉ๋‹ˆ๋‹ค. ๋ฉ”์‹œ์ง€๊ฐ€ ํ‘œ์‹œ๋˜๋ฉด, ํ† ํฐ์„ ์ž…๋ ฅํ•˜์—ฌ ๋กœ๊ทธ์ธํ•˜์„ธ์š”:
```py
>>> from huggingface_hub import notebook_login
>>> notebook_login()
```
## Food-101 ๋ฐ์ดํ„ฐ ์„ธํŠธ ๊ฐ€์ ธ์˜ค๊ธฐ[[load-food101-dataset]]
๐Ÿค— Datasets ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ์—์„œ Food-101 ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ๋” ์ž‘์€ ๋ถ€๋ถ„ ์ง‘ํ•ฉ์„ ๊ฐ€์ ธ์˜ค๋Š” ๊ฒƒ์œผ๋กœ ์‹œ์ž‘ํ•ฉ๋‹ˆ๋‹ค. ์ด๋ ‡๊ฒŒ ํ•˜๋ฉด ์ „์ฒด ๋ฐ์ดํ„ฐ ์„ธํŠธ์— ๋Œ€ํ•œ
ํ›ˆ๋ จ์— ๋งŽ์€ ์‹œ๊ฐ„์„ ํ• ์• ํ•˜๊ธฐ ์ „์— ์‹คํ—˜์„ ํ†ตํ•ด ๋ชจ๋“  ๊ฒƒ์ด ์ œ๋Œ€๋กœ ์ž‘๋™ํ•˜๋Š”์ง€ ํ™•์ธํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
```py
>>> from datasets import load_dataset
>>> food = load_dataset("food101", split="train[:5000]")
```
๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ `train`์„ [`~datasets.Dataset.train_test_split`] ๋ฉ”์†Œ๋“œ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ํ›ˆ๋ จ ๋ฐ ํ…Œ์ŠคํŠธ ์„ธํŠธ๋กœ ๋ถ„ํ• ํ•˜์„ธ์š”:
```py
>>> food = food.train_test_split(test_size=0.2)
```
๊ทธ๋ฆฌ๊ณ  ์˜ˆ์‹œ๋ฅผ ์‚ดํŽด๋ณด์„ธ์š”:
```py
>>> food["train"][0]
{'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=512x512 at 0x7F52AFC8AC50>,
'label': 79}
```
๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ๊ฐ ์˜ˆ์ œ์—๋Š” ๋‘ ๊ฐœ์˜ ํ•„๋“œ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค:
- `image`: ์‹ํ’ˆ ํ•ญ๋ชฉ์˜ PIL ์ด๋ฏธ์ง€
- `label`: ์‹ํ’ˆ ํ•ญ๋ชฉ์˜ ๋ ˆ์ด๋ธ” ํด๋ž˜์Šค
๋ชจ๋ธ์ด ๋ ˆ์ด๋ธ” ID์—์„œ ๋ ˆ์ด๋ธ” ์ด๋ฆ„์„ ์‰ฝ๊ฒŒ ๊ฐ€์ ธ์˜ฌ ์ˆ˜ ์žˆ๋„๋ก
๋ ˆ์ด๋ธ” ์ด๋ฆ„์„ ์ •์ˆ˜๋กœ ๋งคํ•‘ํ•˜๊ณ , ์ •์ˆ˜๋ฅผ ๋ ˆ์ด๋ธ” ์ด๋ฆ„์œผ๋กœ ๋งคํ•‘ํ•˜๋Š” ์‚ฌ์ „์„ ๋งŒ๋“œ์„ธ์š”:
```py
>>> labels = food["train"].features["label"].names
>>> label2id, id2label = dict(), dict()
>>> for i, label in enumerate(labels):
... label2id[label] = str(i)
... id2label[str(i)] = label
```
์ด์ œ ๋ ˆ์ด๋ธ” ID๋ฅผ ๋ ˆ์ด๋ธ” ์ด๋ฆ„์œผ๋กœ ๋ณ€ํ™˜ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค:
```py
>>> id2label[str(79)]
'prime_rib'
```
## ์ „์ฒ˜๋ฆฌ[[preprocess]]
๋‹ค์Œ ๋‹จ๊ณ„๋Š” ์ด๋ฏธ์ง€๋ฅผ ํ…์„œ๋กœ ์ฒ˜๋ฆฌํ•˜๊ธฐ ์œ„ํ•ด ViT ์ด๋ฏธ์ง€ ํ”„๋กœ์„ธ์„œ๋ฅผ ๊ฐ€์ ธ์˜ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค:
```py
>>> from transformers import AutoImageProcessor
>>> checkpoint = "google/vit-base-patch16-224-in21k"
>>> image_processor = AutoImageProcessor.from_pretrained(checkpoint)
```
<frameworkcontent>
<pt>
์ด๋ฏธ์ง€์— ๋ช‡ ๊ฐ€์ง€ ์ด๋ฏธ์ง€ ๋ณ€ํ™˜์„ ์ ์šฉํ•˜์—ฌ ๊ณผ์ ํ•ฉ์— ๋Œ€ํ•ด ๋ชจ๋ธ์„ ๋” ๊ฒฌ๊ณ ํ•˜๊ฒŒ ๋งŒ๋“ญ๋‹ˆ๋‹ค. ์—ฌ๊ธฐ์„œ Torchvision์˜ [`transforms`](https://pytorch.org/vision/stable/transforms.html) ๋ชจ๋“ˆ์„ ์‚ฌ์šฉํ•˜์ง€๋งŒ, ์›ํ•˜๋Š” ์ด๋ฏธ์ง€ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋ฅผ ์‚ฌ์šฉํ•  ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
์ด๋ฏธ์ง€์˜ ์ž„์˜ ๋ถ€๋ถ„์„ ํฌ๋กญํ•˜๊ณ  ํฌ๊ธฐ๋ฅผ ์กฐ์ •ํ•œ ๋‹ค์Œ, ์ด๋ฏธ์ง€ ํ‰๊ท ๊ณผ ํ‘œ์ค€ ํŽธ์ฐจ๋กœ ์ •๊ทœํ™”ํ•˜์„ธ์š”:
```py
>>> from torchvision.transforms import RandomResizedCrop, Compose, Normalize, ToTensor
>>> normalize = Normalize(mean=image_processor.image_mean, std=image_processor.image_std)
>>> size = (
... image_processor.size["shortest_edge"]
... if "shortest_edge" in image_processor.size
... else (image_processor.size["height"], image_processor.size["width"])
... )
>>> _transforms = Compose([RandomResizedCrop(size), ToTensor(), normalize])
```
๊ทธ๋Ÿฐ ๋‹ค์Œ ์ „์ฒ˜๋ฆฌ ํ•จ์ˆ˜๋ฅผ ๋งŒ๋“ค์–ด ๋ณ€ํ™˜์„ ์ ์šฉํ•˜๊ณ  ์ด๋ฏธ์ง€์˜ `pixel_values`(๋ชจ๋ธ์— ๋Œ€ํ•œ ์ž…๋ ฅ)๋ฅผ ๋ฐ˜ํ™˜ํ•˜์„ธ์š”:
```py
>>> def transforms(examples):
... examples["pixel_values"] = [_transforms(img.convert("RGB")) for img in examples["image"]]
... del examples["image"]
... return examples
```
์ „์ฒด ๋ฐ์ดํ„ฐ ์„ธํŠธ์— ์ „์ฒ˜๋ฆฌ ๊ธฐ๋Šฅ์„ ์ ์šฉํ•˜๋ ค๋ฉด ๐Ÿค— Datasets [`~datasets.Dataset.with_transform`]์„ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ์š”์†Œ๋ฅผ ๊ฐ€์ ธ์˜ฌ ๋•Œ ๋ณ€ํ™˜์ด ์ฆ‰์‹œ ์ ์šฉ๋ฉ๋‹ˆ๋‹ค:
```py
>>> food = food.with_transform(transforms)
```
์ด์ œ [`DefaultDataCollator`]๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์˜ˆ์ œ ๋ฐฐ์น˜๋ฅผ ๋งŒ๋“ญ๋‹ˆ๋‹ค. ๐Ÿค— Transformers์˜ ๋‹ค๋ฅธ ๋ฐ์ดํ„ฐ ์ฝœ๋ ˆ์ดํ„ฐ์™€ ๋‹ฌ๋ฆฌ, `DefaultDataCollator`๋Š” ํŒจ๋”ฉ๊ณผ ๊ฐ™์€ ์ถ”๊ฐ€์ ์ธ ์ „์ฒ˜๋ฆฌ๋ฅผ ์ ์šฉํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค.
```py
>>> from transformers import DefaultDataCollator
>>> data_collator = DefaultDataCollator()
```
</pt>
</frameworkcontent>
<frameworkcontent>
<tf>
๊ณผ์ ํ•ฉ์„ ๋ฐฉ์ง€ํ•˜๊ณ  ๋ชจ๋ธ์„ ๋ณด๋‹ค ๊ฒฌ๊ณ ํ•˜๊ฒŒ ๋งŒ๋“ค๊ธฐ ์œ„ํ•ด ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ํ›ˆ๋ จ ๋ถ€๋ถ„์— ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•์„ ์ถ”๊ฐ€ํ•ฉ๋‹ˆ๋‹ค.
์—ฌ๊ธฐ์„œ Keras ์ „์ฒ˜๋ฆฌ ๋ ˆ์ด์–ด๋กœ ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ๋ณ€ํ™˜(๋ฐ์ดํ„ฐ ์ฆ๊ฐ• ํฌํ•จ)๊ณผ
๊ฒ€์ฆ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ๋ณ€ํ™˜(์ค‘์•™ ํฌ๋กœํ•‘, ํฌ๊ธฐ ์กฐ์ •, ์ •๊ทœํ™”๋งŒ)์„ ์ •์˜ํ•ฉ๋‹ˆ๋‹ค.
`tf.image` ๋˜๋Š” ๋‹ค๋ฅธ ์›ํ•˜๋Š” ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋ฅผ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
```py
>>> from tensorflow import keras
>>> from tensorflow.keras import layers
>>> size = (image_processor.size["height"], image_processor.size["width"])
>>> train_data_augmentation = keras.Sequential(
... [
... layers.RandomCrop(size[0], size[1]),
... layers.Rescaling(scale=1.0 / 127.5, offset=-1),
... layers.RandomFlip("horizontal"),
... layers.RandomRotation(factor=0.02),
... layers.RandomZoom(height_factor=0.2, width_factor=0.2),
... ],
... name="train_data_augmentation",
... )
>>> val_data_augmentation = keras.Sequential(
... [
... layers.CenterCrop(size[0], size[1]),
... layers.Rescaling(scale=1.0 / 127.5, offset=-1),
... ],
... name="val_data_augmentation",
... )
```
๋‹ค์Œ์œผ๋กœ ํ•œ ๋ฒˆ์— ํ•˜๋‚˜์˜ ์ด๋ฏธ์ง€๊ฐ€ ์•„๋‹ˆ๋ผ ์ด๋ฏธ์ง€ ๋ฐฐ์น˜์— ์ ์ ˆํ•œ ๋ณ€ํ™˜์„ ์ ์šฉํ•˜๋Š” ํ•จ์ˆ˜๋ฅผ ๋งŒ๋“ญ๋‹ˆ๋‹ค.
```py
>>> import numpy as np
>>> import tensorflow as tf
>>> from PIL import Image
>>> def convert_to_tf_tensor(image: Image):
... np_image = np.array(image)
... tf_image = tf.convert_to_tensor(np_image)
... # `expand_dims()` is used to add a batch dimension since
... # the TF augmentation layers operates on batched inputs.
... return tf.expand_dims(tf_image, 0)
>>> def preprocess_train(example_batch):
... """Apply train_transforms across a batch."""
... images = [
... train_data_augmentation(convert_to_tf_tensor(image.convert("RGB"))) for image in example_batch["image"]
... ]
... example_batch["pixel_values"] = [tf.transpose(tf.squeeze(image)) for image in images]
... return example_batch
... def preprocess_val(example_batch):
... """Apply val_transforms across a batch."""
... images = [
... val_data_augmentation(convert_to_tf_tensor(image.convert("RGB"))) for image in example_batch["image"]
... ]
... example_batch["pixel_values"] = [tf.transpose(tf.squeeze(image)) for image in images]
... return example_batch
```
๐Ÿค— Datasets [`~datasets.Dataset.set_transform`]๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ฆ‰์‹œ ๋ณ€ํ™˜์„ ์ ์šฉํ•˜์„ธ์š”:
```py
food["train"].set_transform(preprocess_train)
food["test"].set_transform(preprocess_val)
```
์ตœ์ข… ์ „์ฒ˜๋ฆฌ ๋‹จ๊ณ„๋กœ `DefaultDataCollator`๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์˜ˆ์ œ ๋ฐฐ์น˜๋ฅผ ๋งŒ๋“ญ๋‹ˆ๋‹ค. ๐Ÿค— Transformers์˜ ๋‹ค๋ฅธ ๋ฐ์ดํ„ฐ ์ฝœ๋ ˆ์ดํ„ฐ์™€ ๋‹ฌ๋ฆฌ
`DefaultDataCollator`๋Š” ํŒจ๋”ฉ๊ณผ ๊ฐ™์€ ์ถ”๊ฐ€ ์ „์ฒ˜๋ฆฌ๋ฅผ ์ ์šฉํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค.
```py
>>> from transformers import DefaultDataCollator
>>> data_collator = DefaultDataCollator(return_tensors="tf")
```
</tf>
</frameworkcontent>
## ํ‰๊ฐ€[[evaluate]]
ํ›ˆ๋ จ ์ค‘์— ํ‰๊ฐ€ ์ง€ํ‘œ๋ฅผ ํฌํ•จํ•˜๋ฉด ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜๋Š” ๋ฐ ๋„์›€์ด ๋˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ์Šต๋‹ˆ๋‹ค.
๐Ÿค— [Evaluate](https://huggingface.co/docs/evaluate/index) ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋กœ ํ‰๊ฐ€ ๋ฐฉ๋ฒ•์„ ๋น ๋ฅด๊ฒŒ ๊ฐ€์ ธ์˜ฌ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ์ž‘์—…์—์„œ๋Š”
[accuracy](https://huggingface.co/spaces/evaluate-metric/accuracy) ํ‰๊ฐ€ ์ง€ํ‘œ๋ฅผ ๊ฐ€์ ธ์˜ต๋‹ˆ๋‹ค. (๐Ÿค— Evaluate [๋น ๋ฅธ ๋‘˜๋Ÿฌ๋ณด๊ธฐ](https://huggingface.co/docs/evaluate/a_quick_tour)๋ฅผ ์ฐธ์กฐํ•˜์—ฌ ํ‰๊ฐ€ ์ง€ํ‘œ๋ฅผ ๊ฐ€์ ธ์˜ค๊ณ  ๊ณ„์‚ฐํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ์ž์„ธํžˆ ์•Œ์•„๋ณด์„ธ์š”):
```py
>>> import evaluate
>>> accuracy = evaluate.load("accuracy")
```
๊ทธ๋Ÿฐ ๋‹ค์Œ ์˜ˆ์ธก๊ณผ ๋ ˆ์ด๋ธ”์„ [`~evaluate.EvaluationModule.compute`]์— ์ „๋‹ฌํ•˜์—ฌ ์ •ํ™•๋„๋ฅผ ๊ณ„์‚ฐํ•˜๋Š” ํ•จ์ˆ˜๋ฅผ ๋งŒ๋“ญ๋‹ˆ๋‹ค:
```py
>>> import numpy as np
>>> def compute_metrics(eval_pred):
... predictions, labels = eval_pred
... predictions = np.argmax(predictions, axis=1)
... return accuracy.compute(predictions=predictions, references=labels)
```
์ด์ œ `compute_metrics` ํ•จ์ˆ˜๋ฅผ ์‚ฌ์šฉํ•  ์ค€๋น„๊ฐ€ ๋˜์—ˆ์œผ๋ฉฐ, ํ›ˆ๋ จ์„ ์„ค์ •ํ•˜๋ฉด ์ด ํ•จ์ˆ˜๋กœ ๋˜๋Œ์•„์˜ฌ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
## ํ›ˆ๋ จ[[train]]
<frameworkcontent>
<pt>
<Tip>
[`Trainer`]๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋ชจ๋ธ์„ ๋ฏธ์„ธ ์กฐ์ •ํ•˜๋Š” ๋ฐฉ๋ฒ•์— ์ต์ˆ™ํ•˜์ง€ ์•Š์€ ๊ฒฝ์šฐ, [์—ฌ๊ธฐ](../training#train-with-pytorch-trainer)์—์„œ ๊ธฐ๋ณธ ํŠœํ† ๋ฆฌ์–ผ์„ ํ™•์ธํ•˜์„ธ์š”!
</Tip>
์ด์ œ ๋ชจ๋ธ์„ ํ›ˆ๋ จ์‹œํ‚ฌ ์ค€๋น„๊ฐ€ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค! [`AutoModelForImageClassification`]๋กœ ViT๋ฅผ ๊ฐ€์ ธ์˜ต๋‹ˆ๋‹ค. ์˜ˆ์ƒ๋˜๋Š” ๋ ˆ์ด๋ธ” ์ˆ˜, ๋ ˆ์ด๋ธ” ๋งคํ•‘ ๋ฐ ๋ ˆ์ด๋ธ” ์ˆ˜๋ฅผ ์ง€์ •ํ•˜์„ธ์š”:
```py
>>> from transformers import AutoModelForImageClassification, TrainingArguments, Trainer
>>> model = AutoModelForImageClassification.from_pretrained(
... checkpoint,
... num_labels=len(labels),
... id2label=id2label,
... label2id=label2id,
... )
```
์ด์ œ ์„ธ ๋‹จ๊ณ„๋งŒ ๊ฑฐ์น˜๋ฉด ๋์ž…๋‹ˆ๋‹ค:
1. [`TrainingArguments`]์—์„œ ํ›ˆ๋ จ ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ •์˜ํ•˜์„ธ์š”. `image` ์—ด์ด ์‚ญ์ œ๋˜๊ธฐ ๋•Œ๋ฌธ์— ๋ฏธ์‚ฌ์šฉ ์—ด์„ ์ œ๊ฑฐํ•˜์ง€ ์•Š๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค. `image` ์—ด์ด ์—†์œผ๋ฉด `pixel_values`์„ ์ƒ์„ฑํ•  ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค. ์ด ๋™์ž‘์„ ๋ฐฉ์ง€ํ•˜๋ ค๋ฉด `remove_unused_columns=False`๋กœ ์„ค์ •ํ•˜์„ธ์š”! ๋‹ค๋ฅธ ์œ ์ผํ•œ ํ•„์ˆ˜ ๋งค๊ฐœ๋ณ€์ˆ˜๋Š” ๋ชจ๋ธ ์ €์žฅ ์œ„์น˜๋ฅผ ์ง€์ •ํ•˜๋Š” `output_dir`์ž…๋‹ˆ๋‹ค. `push_to_hub=True`๋กœ ์„ค์ •ํ•˜๋ฉด ์ด ๋ชจ๋ธ์„ ํ—ˆ๋ธŒ์— ํ‘ธ์‹œํ•ฉ๋‹ˆ๋‹ค(๋ชจ๋ธ์„ ์—…๋กœ๋“œํ•˜๋ ค๋ฉด Hugging Face์— ๋กœ๊ทธ์ธํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค). ๊ฐ ์—ํญ์ด ๋๋‚  ๋•Œ๋งˆ๋‹ค, [`Trainer`]๊ฐ€ ์ •ํ™•๋„๋ฅผ ํ‰๊ฐ€ํ•˜๊ณ  ํ›ˆ๋ จ ์ฒดํฌํฌ์ธํŠธ๋ฅผ ์ €์žฅํ•ฉ๋‹ˆ๋‹ค.
2. [`Trainer`]์— ๋ชจ๋ธ, ๋ฐ์ดํ„ฐ ์„ธํŠธ, ํ† ํฌ๋‚˜์ด์ €, ๋ฐ์ดํ„ฐ ์ฝœ๋ ˆ์ดํ„ฐ ๋ฐ `compute_metrics` ํ•จ์ˆ˜์™€ ํ•จ๊ป˜ ํ›ˆ๋ จ ์ธ์ˆ˜๋ฅผ ์ „๋‹ฌํ•˜์„ธ์š”.
3. [`~Trainer.train`]์„ ํ˜ธ์ถœํ•˜์—ฌ ๋ชจ๋ธ์„ ๋ฏธ์„ธ ์กฐ์ •ํ•˜์„ธ์š”.
```py
>>> training_args = TrainingArguments(
... output_dir="my_awesome_food_model",
... remove_unused_columns=False,
... evaluation_strategy="epoch",
... save_strategy="epoch",
... learning_rate=5e-5,
... per_device_train_batch_size=16,
... gradient_accumulation_steps=4,
... per_device_eval_batch_size=16,
... num_train_epochs=3,
... warmup_ratio=0.1,
... logging_steps=10,
... load_best_model_at_end=True,
... metric_for_best_model="accuracy",
... push_to_hub=True,
... )
>>> trainer = Trainer(
... model=model,
... args=training_args,
... data_collator=data_collator,
... train_dataset=food["train"],
... eval_dataset=food["test"],
... tokenizer=image_processor,
... compute_metrics=compute_metrics,
... )
>>> trainer.train()
```
ํ›ˆ๋ จ์ด ์™„๋ฃŒ๋˜๋ฉด, ๋ชจ๋“  ์‚ฌ๋žŒ์ด ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋„๋ก [`~transformers.Trainer.push_to_hub`] ๋ฉ”์†Œ๋“œ๋กœ ๋ชจ๋ธ์„ ํ—ˆ๋ธŒ์— ๊ณต์œ ํ•˜์„ธ์š”:
```py
>>> trainer.push_to_hub()
```
</pt>
</frameworkcontent>
<frameworkcontent>
<tf>
<Tip>
Keras๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋ชจ๋ธ์„ ๋ฏธ์„ธ ์กฐ์ •ํ•˜๋Š” ๋ฐฉ๋ฒ•์— ์ต์ˆ™ํ•˜์ง€ ์•Š์€ ๊ฒฝ์šฐ, ๋จผ์ € [๊ธฐ๋ณธ ํŠœํ† ๋ฆฌ์–ผ](./training#train-a-tensorflow-model-with-keras)์„ ํ™•์ธํ•˜์„ธ์š”!
</Tip>
TensorFlow์—์„œ ๋ชจ๋ธ์„ ๋ฏธ์„ธ ์กฐ์ •ํ•˜๋ ค๋ฉด ๋‹ค์Œ ๋‹จ๊ณ„๋ฅผ ๋”ฐ๋ฅด์„ธ์š”:
1. ํ›ˆ๋ จ ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ •์˜ํ•˜๊ณ  ์˜ตํ‹ฐ๋งˆ์ด์ €์™€ ํ•™์Šต๋ฅ  ์Šค์ผ€์ฅด์„ ์„ค์ •ํ•ฉ๋‹ˆ๋‹ค.
2. ์‚ฌ์ „ ํ›ˆ๋ จ๋œ ๋ชจ๋ธ์„ ์ธ์Šคํ„ด์Šคํ™”ํ•ฉ๋‹ˆ๋‹ค.
3. ๐Ÿค— Dataset์„ `tf.data.Dataset`์œผ๋กœ ๋ณ€ํ™˜ํ•ฉ๋‹ˆ๋‹ค.
4. ๋ชจ๋ธ์„ ์ปดํŒŒ์ผํ•ฉ๋‹ˆ๋‹ค.
5. ์ฝœ๋ฐฑ์„ ์ถ”๊ฐ€ํ•˜๊ณ  ํ›ˆ๋ จ์„ ์ˆ˜ํ–‰ํ•˜๊ธฐ ์œ„ํ•ด `fit()` ๋ฉ”์†Œ๋“œ๋ฅผ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค.
6. ์ปค๋ฎค๋‹ˆํ‹ฐ์™€ ๊ณต์œ ํ•˜๊ธฐ ์œ„ํ•ด ๋ชจ๋ธ์„ ๐Ÿค— Hub์— ์—…๋กœ๋“œํ•ฉ๋‹ˆ๋‹ค.
ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ, ์˜ตํ‹ฐ๋งˆ์ด์ € ๋ฐ ํ•™์Šต๋ฅ  ์Šค์ผ€์ฅด์„ ์ •์˜ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ์‹œ์ž‘ํ•ฉ๋‹ˆ๋‹ค:
```py
>>> from transformers import create_optimizer
>>> batch_size = 16
>>> num_epochs = 5
>>> num_train_steps = len(food["train"]) * num_epochs
>>> learning_rate = 3e-5
>>> weight_decay_rate = 0.01
>>> optimizer, lr_schedule = create_optimizer(
... init_lr=learning_rate,
... num_train_steps=num_train_steps,
... weight_decay_rate=weight_decay_rate,
... num_warmup_steps=0,
... )
```
๊ทธ๋Ÿฐ ๋‹ค์Œ ๋ ˆ์ด๋ธ” ๋งคํ•‘๊ณผ ํ•จ๊ป˜ [`TFAuto ModelForImageClassification`]์œผ๋กœ ViT๋ฅผ ๊ฐ€์ ธ์˜ต๋‹ˆ๋‹ค:
```py
>>> from transformers import TFAutoModelForImageClassification
>>> model = TFAutoModelForImageClassification.from_pretrained(
... checkpoint,
... id2label=id2label,
... label2id=label2id,
... )
```
๋ฐ์ดํ„ฐ ์„ธํŠธ๋ฅผ [`~datasets.Dataset.to_tf_dataset`]์™€ `data_collator`๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ `tf.data.Dataset` ํ˜•์‹์œผ๋กœ ๋ณ€ํ™˜ํ•˜์„ธ์š”:
```py
>>> # converting our train dataset to tf.data.Dataset
>>> tf_train_dataset = food["train"].to_tf_dataset(
... columns="pixel_values", label_cols="label", shuffle=True, batch_size=batch_size, collate_fn=data_collator
... )
>>> # converting our test dataset to tf.data.Dataset
>>> tf_eval_dataset = food["test"].to_tf_dataset(
... columns="pixel_values", label_cols="label", shuffle=True, batch_size=batch_size, collate_fn=data_collator
... )
```
`compile()`๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ํ›ˆ๋ จ ๋ชจ๋ธ์„ ๊ตฌ์„ฑํ•˜์„ธ์š”:
```py
>>> from tensorflow.keras.losses import SparseCategoricalCrossentropy
>>> loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
>>> model.compile(optimizer=optimizer, loss=loss)
```
์˜ˆ์ธก์—์„œ ์ •ํ™•๋„๋ฅผ ๊ณ„์‚ฐํ•˜๊ณ  ๋ชจ๋ธ์„ ๐Ÿค— Hub๋กœ ํ‘ธ์‹œํ•˜๋ ค๋ฉด [Keras callbacks](../main_classes/keras_callbacks)๋ฅผ ์‚ฌ์šฉํ•˜์„ธ์š”.
`compute_metrics` ํ•จ์ˆ˜๋ฅผ [KerasMetricCallback](../main_classes/keras_callbacks#transformers.KerasMetricCallback)์— ์ „๋‹ฌํ•˜๊ณ ,
[PushToHubCallback](../main_classes/keras_callbacks#transformers.PushToHubCallback)์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ชจ๋ธ์„ ์—…๋กœ๋“œํ•ฉ๋‹ˆ๋‹ค:
```py
>>> from transformers.keras_callbacks import KerasMetricCallback, PushToHubCallback
>>> metric_callback = KerasMetricCallback(metric_fn=compute_metrics, eval_dataset=tf_eval_dataset)
>>> push_to_hub_callback = PushToHubCallback(
... output_dir="food_classifier",
... tokenizer=image_processor,
... save_strategy="no",
... )
>>> callbacks = [metric_callback, push_to_hub_callback]
```
์ด์ œ ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•  ์ค€๋น„๊ฐ€ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค! ํ›ˆ๋ จ ๋ฐ ๊ฒ€์ฆ ๋ฐ์ดํ„ฐ ์„ธํŠธ, ์—ํญ ์ˆ˜์™€ ํ•จ๊ป˜ `fit()`์„ ํ˜ธ์ถœํ•˜๊ณ ,
์ฝœ๋ฐฑ์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ชจ๋ธ์„ ๋ฏธ์„ธ ์กฐ์ •ํ•ฉ๋‹ˆ๋‹ค:
```py
>>> model.fit(tf_train_dataset, validation_data=tf_eval_dataset, epochs=num_epochs, callbacks=callbacks)
Epoch 1/5
250/250 [==============================] - 313s 1s/step - loss: 2.5623 - val_loss: 1.4161 - accuracy: 0.9290
Epoch 2/5
250/250 [==============================] - 265s 1s/step - loss: 0.9181 - val_loss: 0.6808 - accuracy: 0.9690
Epoch 3/5
250/250 [==============================] - 252s 1s/step - loss: 0.3910 - val_loss: 0.4303 - accuracy: 0.9820
Epoch 4/5
250/250 [==============================] - 251s 1s/step - loss: 0.2028 - val_loss: 0.3191 - accuracy: 0.9900
Epoch 5/5
250/250 [==============================] - 238s 949ms/step - loss: 0.1232 - val_loss: 0.3259 - accuracy: 0.9890
```
์ถ•ํ•˜ํ•ฉ๋‹ˆ๋‹ค! ๋ชจ๋ธ์„ ๋ฏธ์„ธ ์กฐ์ •ํ•˜๊ณ  ๐Ÿค— Hub์— ๊ณต์œ ํ–ˆ์Šต๋‹ˆ๋‹ค. ์ด์ œ ์ถ”๋ก ์— ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค!
</tf>
</frameworkcontent>
<Tip>
์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜๋ฅผ ์œ„ํ•œ ๋ชจ๋ธ์„ ๋ฏธ์„ธ ์กฐ์ •ํ•˜๋Š” ์ž์„ธํ•œ ์˜ˆ์ œ๋Š” ๋‹ค์Œ [PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb)์„ ์ฐธ์กฐํ•˜์„ธ์š”.
</Tip>
## ์ถ”๋ก [[inference]]
์ข‹์•„์š”, ์ด์ œ ๋ชจ๋ธ์„ ๋ฏธ์„ธ ์กฐ์ •ํ–ˆ์œผ๋‹ˆ ์ถ”๋ก ์— ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค!
์ถ”๋ก ์„ ์ˆ˜ํ–‰ํ•˜๊ณ ์ž ํ•˜๋Š” ์ด๋ฏธ์ง€๋ฅผ ๊ฐ€์ ธ์™€๋ด…์‹œ๋‹ค:
```py
>>> ds = load_dataset("food101", split="validation[:10]")
>>> image = ds["image"][0]
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png" alt="image of beignets"/>
</div>
๋ฏธ์„ธ ์กฐ์ • ๋ชจ๋ธ๋กœ ์ถ”๋ก ์„ ์‹œ๋„ํ•˜๋Š” ๊ฐ€์žฅ ๊ฐ„๋‹จํ•œ ๋ฐฉ๋ฒ•์€ [`pipeline`]์„ ์‚ฌ์šฉํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๋ชจ๋ธ๋กœ ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜๋ฅผ ์œ„ํ•œ `pipeline`์„ ์ธ์Šคํ„ด์Šคํ™”ํ•˜๊ณ  ์ด๋ฏธ์ง€๋ฅผ ์ „๋‹ฌํ•ฉ๋‹ˆ๋‹ค:
```py
>>> from transformers import pipeline
>>> classifier = pipeline("image-classification", model="my_awesome_food_model")
>>> classifier(image)
[{'score': 0.31856709718704224, 'label': 'beignets'},
{'score': 0.015232225880026817, 'label': 'bruschetta'},
{'score': 0.01519392803311348, 'label': 'chicken_wings'},
{'score': 0.013022331520915031, 'label': 'pork_chop'},
{'score': 0.012728818692266941, 'label': 'prime_rib'}]
```
์›ํ•œ๋‹ค๋ฉด, `pipeline`์˜ ๊ฒฐ๊ณผ๋ฅผ ์ˆ˜๋™์œผ๋กœ ๋ณต์ œํ•  ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค:
<frameworkcontent>
<pt>
์ด๋ฏธ์ง€๋ฅผ ์ „์ฒ˜๋ฆฌํ•˜๊ธฐ ์œ„ํ•ด ์ด๋ฏธ์ง€ ํ”„๋กœ์„ธ์„œ๋ฅผ ๊ฐ€์ ธ์˜ค๊ณ  `input`์„ PyTorch ํ…์„œ๋กœ ๋ฐ˜ํ™˜ํ•ฉ๋‹ˆ๋‹ค:
```py
>>> from transformers import AutoImageProcessor
>>> import torch
>>> image_processor = AutoImageProcessor.from_pretrained("my_awesome_food_model")
>>> inputs = image_processor(image, return_tensors="pt")
```
์ž…๋ ฅ์„ ๋ชจ๋ธ์— ์ „๋‹ฌํ•˜๊ณ  logits์„ ๋ฐ˜ํ™˜ํ•ฉ๋‹ˆ๋‹ค:
```py
>>> from transformers import AutoModelForImageClassification
>>> model = AutoModelForImageClassification.from_pretrained("my_awesome_food_model")
>>> with torch.no_grad():
... logits = model(**inputs).logits
```
ํ™•๋ฅ ์ด ๊ฐ€์žฅ ๋†’์€ ์˜ˆ์ธก ๋ ˆ์ด๋ธ”์„ ๊ฐ€์ ธ์˜ค๊ณ , ๋ชจ๋ธ์˜ `id2label` ๋งคํ•‘์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ ˆ์ด๋ธ”๋กœ ๋ณ€ํ™˜ํ•ฉ๋‹ˆ๋‹ค:
```py
>>> predicted_label = logits.argmax(-1).item()
>>> model.config.id2label[predicted_label]
'beignets'
```
</pt>
</frameworkcontent>
<frameworkcontent>
<tf>
์ด๋ฏธ์ง€๋ฅผ ์ „์ฒ˜๋ฆฌํ•˜๊ธฐ ์œ„ํ•ด ์ด๋ฏธ์ง€ ํ”„๋กœ์„ธ์„œ๋ฅผ ๊ฐ€์ ธ์˜ค๊ณ  `input`์„ TensorFlow ํ…์„œ๋กœ ๋ฐ˜ํ™˜ํ•ฉ๋‹ˆ๋‹ค:
```py
>>> from transformers import AutoImageProcessor
>>> image_processor = AutoImageProcessor.from_pretrained("MariaK/food_classifier")
>>> inputs = image_processor(image, return_tensors="tf")
```
์ž…๋ ฅ์„ ๋ชจ๋ธ์— ์ „๋‹ฌํ•˜๊ณ  logits์„ ๋ฐ˜ํ™˜ํ•ฉ๋‹ˆ๋‹ค:
```py
>>> from transformers import TFAutoModelForImageClassification
>>> model = TFAutoModelForImageClassification.from_pretrained("MariaK/food_classifier")
>>> logits = model(**inputs).logits
```
ํ™•๋ฅ ์ด ๊ฐ€์žฅ ๋†’์€ ์˜ˆ์ธก ๋ ˆ์ด๋ธ”์„ ๊ฐ€์ ธ์˜ค๊ณ , ๋ชจ๋ธ์˜ `id2label` ๋งคํ•‘์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ ˆ์ด๋ธ”๋กœ ๋ณ€ํ™˜ํ•ฉ๋‹ˆ๋‹ค:
```py
>>> predicted_class_id = int(tf.math.argmax(logits, axis=-1)[0])
>>> model.config.id2label[predicted_class_id]
'beignets'
```
</tf>
</frameworkcontent>