Llama 3.1 8B - DART LLM Robot Task Planning (QLoRA Fine-tuned)
This model is a QLoRA fine-tuned version of meta-llama/Llama-3.1-8B specialized for robot task planning in construction environments.
The model converts natural language commands into structured task sequences for construction robots including excavators and dump trucks.
Model Details
- Base Model: meta-llama/Llama-3.1-8B
- Fine-tuning Method: QLoRA (4-bit quantization + LoRA)
- LoRA Rank: 16-32 (optimized per model size)
- LoRA Alpha: 16-32
- Target Modules: q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj
- Dataset: YongdongWang/dart_llm_tasks_pretty
- Training Domain: Construction robotics
Usage
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
import torch
# Load tokenizer and base model
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.1-8B")
base_model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-3.1-8B",
torch_dtype=torch.float16,
device_map="auto"
)
# Load LoRA adapter
model = PeftModel.from_pretrained(base_model, "YongdongWang/llama-3.1-8b-lora-qlora-dart-llm")
# Generate robot task sequence
instruction = "Deploy Excavator 1 to Soil Area 1 for excavation"
prompt = f"### Instruction:\n{instruction}\n\n### Response:\n"
inputs = tokenizer(prompt, return_tensors="pt")
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=512,
do_sample=False,
pad_token_id=tokenizer.eos_token_id
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
Training Details
- Training Data: DART LLM Tasks - Robot command and task planning dataset
- Domain: Construction robotics (excavators, dump trucks, soil/rock areas)
- Training Epochs: 6-12 (optimized per model size)
- Batch Size: 1 (with gradient accumulation)
- Learning Rate: 1e-4 to 3e-4 (scaled by model size)
- Optimizer: paged_adamw_8bit or adamw_torch
Capabilities
- Multi-robot coordination: Handle multiple excavators and dump trucks
- Task dependencies: Generate proper task sequences with dependencies
- Spatial reasoning: Understand soil areas, rock areas, puddles, and navigation
- Action planning: Convert commands to structured JSON task definitions
Example Output
The model generates structured task sequences in JSON format for robot execution:
{
"tasks": [
{
"instruction_function": {
"dependencies": [],
"name": "target_area_for_specific_robots",
"object_keywords": ["soil_area_1"],
"robot_ids": ["robot_excavator_01"],
"robot_type": null
},
"task": "target_area_for_specific_robots_1"
}
]
}
Limitations
This model is specifically trained for construction robotics scenarios and may not generalize to other domains without additional fine-tuning.
Citation
@misc{llama_3.1_8b_lora_qlora_dart_llm,
title={Llama 3.1 8B Fine-tuned with QLoRA for DART LLM Tasks},
author={YongdongWang},
year={2024},
publisher={Hugging Face},
url={https://huggingface.co/YongdongWang/llama-3.1-8b-lora-qlora-dart-llm}
}
Model Card Authors
YongdongWang
Model Card Contact
For questions or issues, please open an issue in the repository or contact the model author.
- Downloads last month
- 3
Model tree for YongdongWang/llama-3.1-8b-lora-qlora-dart-llm
Base model
meta-llama/Llama-3.1-8B