File size: 8,329 Bytes
9e1ae8d 8e675bf 19f66c9 4929c37 4e31908 a346c0b 4929c37 abf499d 4929c37 a346c0b 4929c37 abf499d 4929c37 bb54e01 4929c37 3f1dbd8 4929c37 8e675bf bda1c73 c3c3de8 bda1c73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
---
license: apache-2.0
language:
- en
- zh
base_model:
- Qwen/Qwen2.5-14B
- Qwen/Qwen2.5-14B-Instruct
- Qwen/Qwen2.5-14B-Instruct-1M
- EVA-UNIT-01/EVA-Qwen2.5-14B-v0.2
- Azure99/Blossom-V6-14B
- arcee-ai/Virtuoso-Small-v2
pipeline_tag: text-generation
tags:
- merge
model-index:
- name: Qwen2.5-14B-1M-YOYO-V3
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 83.98
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=YOYO-AI/Qwen2.5-14B-1M-YOYO-V3
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 49.47
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=YOYO-AI/Qwen2.5-14B-1M-YOYO-V3
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 53.55
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=YOYO-AI/Qwen2.5-14B-1M-YOYO-V3
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 10.51
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=YOYO-AI/Qwen2.5-14B-1M-YOYO-V3
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 11.10
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=YOYO-AI/Qwen2.5-14B-1M-YOYO-V3
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 46.74
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=YOYO-AI/Qwen2.5-14B-1M-YOYO-V3
name: Open LLM Leaderboard
---

# Qwen2.5-14B-1M-YOYO-V3
*[Qwen2.5-YOYO Fourth-Gen Model Officially Released!](https://huggingface.co/YOYO-AI/Qwen2.5-14B-YOYO-V4)*
This time, I not only released the model but also shared some model merging insights that might be even more valuable than the model itself.
Let’s start by looking at the initial merge configuration (YAML):
```yaml
merge_method: model_stock
base_model: Qwen/Qwen2.5-14B
models:
- model: Qwen/Qwen2.5-14B-instruct
- model: Qwen/Qwen2.5-14B-instruct-1M
dtype: bfloat16
```
Does it seem like there are no issues at all? However, merged models occasionally exhibit **uncontrollable outputs**, likely due to significant discrepancies between instruction-tuned models and base models.
To address this, I first attempted to directly integrate a fine-tuned model with smaller divergence from the base model, such as **Virtuoso-Small-v2**.
This gave rise to [Qwen2.5-14B-YOYO-latest-V2](https://huggingface.co/YOYO-AI/Qwen2.5-14B-YOYO-latest-V2).
```yaml
merge_method: model_stock
base_model: Qwen/Qwen2.5-14B
models:
- model: Qwen/Qwen2.5-14B-instruct
- model: Qwen/Qwen2.5-14B-instruct-1M
- model: arcee-ai/Virtuoso-Small-v2
dtype: bfloat16
name: Qwen2.5-14B-YOYO-latest-V2
```
Although the uncontrollable output issue has been addressed, the model still lacks stability.
Through practical experimentation, I found that first merging **"high-divergence"** models (significantly different from the base) into **"low-divergence"** models (closer to the base) using the [DELLA](https://arxiv.org/abs/2406.11617) method, then applying the [Model Stock](https://arxiv.org/abs/2403.19522) method, ultimately produces a model that is not only more stable but also achieves better performance.
## Key models used:
*1. Low-divergence, high-performance models:*
- Virtuoso-Small-v2
- Blossom-V6-14B
*2. High-divergence, instruction-focused models:*
- Qwen2.5-14B-instruct
- Qwen2.5-14B-instruct-1M
## DELLA Merge Configuration:
```yaml
models:
- model: Qwen/Qwen2.5-14B-Instruct
parameters:
density: 1
weight: 1
lambda: 0.9
merge_method: della
base_model: arcee-ai/Virtuoso-Small-v2
parameters:
density: 1
weight: 1
lambda: 0.9
normalize: true
int8_mask: true
dtype: bfloat16
tokenizer_source: base
name: Qwen2.5-14B-YOYO-della1
```
```yaml
models:
- model: Qwen/Qwen2.5-14B-Instruct-1M
parameters:
density: 1
weight: 1
lambda: 0.9
merge_method: della
base_model: arcee-ai/Virtuoso-Small-v2
parameters:
density: 1
weight: 1
lambda: 0.9
normalize: true
int8_mask: true
dtype: bfloat16
tokenizer_source: base
name: Qwen2.5-14B-YOYO-della2
```
```yaml
models:
- model: Qwen/Qwen2.5-14B-Instruct
parameters:
density: 1
weight: 1
lambda: 0.9
merge_method: della
base_model: Azure99/Blossom-V6-14B
parameters:
density: 1
weight: 1
lambda: 0.9
normalize: true
int8_mask: true
dtype: bfloat16
tokenizer_source: base
name: Qwen2.5-14B-YOYO-della3
```
```yaml
models:
- model: Qwen/Qwen2.5-14B-Instruct-1M
parameters:
density: 1
weight: 1
lambda: 0.9
merge_method: della
base_model: Azure99/Blossom-V6-14B
parameters:
density: 1
weight: 1
lambda: 0.9
normalize: true
int8_mask: true
dtype: bfloat16
tokenizer_source: base
name: Qwen2.5-14B-YOYO-della4
```
This approach yielded four variants:
- `Qwen2.5-14B-YOYO-della1`
- `Qwen2.5-14B-YOYO-della2`
- `Qwen2.5-14B-YOYO-della3`
- `Qwen2.5-14B-YOYO-della4`
## Base Model:
To enhance base model roleplay and creative writing capabilities, I applied the same strategy:
```yaml
models:
- model: EVA-UNIT-01/EVA-Qwen2.5-14B-v0.2
parameters:
density: 1
weight: 1
lambda: 0.9
merge_method: della
base_model: Qwen/Qwen2.5-14B
parameters:
density: 1
weight: 1
lambda: 0.9
normalize: true
int8_mask: true
dtype: bfloat16
tokenizer_source: base
name: EVA-Qwen2.5-14B-base
```
Next, I extended the context length using the SCE method:
```yaml
merge_method: sce
models:
- model: EVA-Qwen2.5-14B-base
base_model: Qwen/Qwen2.5-14B-Instruct-1M
parameters:
select_topk: 1
dtype: bfloat16
tokenizer_source: base
normalize: true
int8_mask: true
name: Qwen2.5-14B-pro
```
## Final Merge Step:
```yaml
merge_method: model_stock
base_model: Qwen2.5-14B-pro
models:
- model: Qwen2.5-14B-YOYO-della1
- model: Qwen2.5-14B-YOYO-della2
- model: Qwen2.5-14B-YOYO-della3
- model: Qwen2.5-14B-YOYO-della4
dtype: bfloat16
tokenizer_source: base
int8_mask: true
normalize: true
name: Qwen2.5-14B-1M-YOYO-V3
```
I hope this helps!
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/YOYO-AI__Qwen2.5-14B-1M-YOYO-V3-details)
| Metric |Value|
|-------------------|----:|
|Avg. |42.56|
|IFEval (0-Shot) |83.98|
|BBH (3-Shot) |49.47|
|MATH Lvl 5 (4-Shot)|53.55|
|GPQA (0-shot) |10.51|
|MuSR (0-shot) |11.10|
|MMLU-PRO (5-shot) |46.74|
|