File size: 8,329 Bytes
9e1ae8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e675bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19f66c9
 
 
4929c37
4e31908
 
 
a346c0b
4929c37
 
 
 
 
 
 
 
 
 
abf499d
4929c37
a346c0b
4929c37
 
 
 
 
 
 
 
 
 
 
 
abf499d
4929c37
bb54e01
4929c37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f1dbd8
4929c37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e675bf
bda1c73
 
c3c3de8
bda1c73
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
---
license: apache-2.0
language:
- en
- zh
base_model:
- Qwen/Qwen2.5-14B
- Qwen/Qwen2.5-14B-Instruct
- Qwen/Qwen2.5-14B-Instruct-1M
- EVA-UNIT-01/EVA-Qwen2.5-14B-v0.2
- Azure99/Blossom-V6-14B
- arcee-ai/Virtuoso-Small-v2
pipeline_tag: text-generation
tags:
- merge
model-index:
- name: Qwen2.5-14B-1M-YOYO-V3
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 83.98
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=YOYO-AI/Qwen2.5-14B-1M-YOYO-V3
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 49.47
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=YOYO-AI/Qwen2.5-14B-1M-YOYO-V3
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 53.55
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=YOYO-AI/Qwen2.5-14B-1M-YOYO-V3
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 10.51
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=YOYO-AI/Qwen2.5-14B-1M-YOYO-V3
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 11.10
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=YOYO-AI/Qwen2.5-14B-1M-YOYO-V3
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 46.74
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=YOYO-AI/Qwen2.5-14B-1M-YOYO-V3
      name: Open LLM Leaderboard
---

![image/png](https://cdn-uploads.huggingface.co/production/uploads/64e174e202fa032de4143324/CfIE4_oZgpNsNZyurjO7D.png)
# Qwen2.5-14B-1M-YOYO-V3

 *[Qwen2.5-YOYO Fourth-Gen Model Officially Released!](https://huggingface.co/YOYO-AI/Qwen2.5-14B-YOYO-V4)*
 
This time, I not only released the model but also shared some model merging insights that might be even more valuable than the model itself.

Let’s start by looking at the initial merge configuration (YAML):
```yaml
merge_method: model_stock  
base_model: Qwen/Qwen2.5-14B  
models:  
  - model: Qwen/Qwen2.5-14B-instruct  
  - model: Qwen/Qwen2.5-14B-instruct-1M  
dtype: bfloat16
```
Does it seem like there are no issues at all? However, merged models occasionally exhibit **uncontrollable outputs**, likely due to significant discrepancies between instruction-tuned models and base models.

To address this, I first attempted to directly integrate a fine-tuned model with smaller divergence from the base model, such as **Virtuoso-Small-v2**.

This gave rise to [Qwen2.5-14B-YOYO-latest-V2](https://huggingface.co/YOYO-AI/Qwen2.5-14B-YOYO-latest-V2).
```yaml
merge_method: model_stock  
base_model: Qwen/Qwen2.5-14B  
models:  
  - model: Qwen/Qwen2.5-14B-instruct  
  - model: Qwen/Qwen2.5-14B-instruct-1M  
  - model: arcee-ai/Virtuoso-Small-v2  
dtype: bfloat16
name: Qwen2.5-14B-YOYO-latest-V2
```
Although the uncontrollable output issue has been addressed, the model still lacks stability.

Through practical experimentation, I found that first merging **"high-divergence"** models (significantly different from the base) into **"low-divergence"** models (closer to the base) using the  [DELLA](https://arxiv.org/abs/2406.11617)  method, then applying the  [Model Stock](https://arxiv.org/abs/2403.19522)  method, ultimately produces a model that is not only more stable but also achieves better performance.

## Key models used:  
*1. Low-divergence, high-performance models:* 

   - Virtuoso-Small-v2  
   - Blossom-V6-14B
     
*2. High-divergence, instruction-focused models:*

   - Qwen2.5-14B-instruct  
   - Qwen2.5-14B-instruct-1M

## DELLA Merge Configuration:
```yaml
models:  
  - model: Qwen/Qwen2.5-14B-Instruct  
    parameters:  
      density: 1  
      weight: 1  
      lambda: 0.9  
merge_method: della  
base_model: arcee-ai/Virtuoso-Small-v2  
parameters:  
  density: 1  
  weight: 1  
  lambda: 0.9  
  normalize: true  
  int8_mask: true  
dtype: bfloat16  
tokenizer_source: base  
name: Qwen2.5-14B-YOYO-della1
```
```yaml
models:  
  - model: Qwen/Qwen2.5-14B-Instruct-1M  
    parameters:  
      density: 1  
      weight: 1  
      lambda: 0.9  
merge_method: della  
base_model: arcee-ai/Virtuoso-Small-v2  
parameters:  
  density: 1  
  weight: 1  
  lambda: 0.9  
  normalize: true  
  int8_mask: true  
dtype: bfloat16  
tokenizer_source: base  
name: Qwen2.5-14B-YOYO-della2
```
```yaml
models:  
  - model: Qwen/Qwen2.5-14B-Instruct  
    parameters:  
      density: 1  
      weight: 1  
      lambda: 0.9  
merge_method: della  
base_model: Azure99/Blossom-V6-14B  
parameters:  
  density: 1  
  weight: 1  
  lambda: 0.9  
  normalize: true  
  int8_mask: true  
dtype: bfloat16  
tokenizer_source: base  
name: Qwen2.5-14B-YOYO-della3
```
```yaml
models:  
  - model: Qwen/Qwen2.5-14B-Instruct-1M  
    parameters:  
      density: 1  
      weight: 1  
      lambda: 0.9  
merge_method: della  
base_model: Azure99/Blossom-V6-14B  
parameters:  
  density: 1  
  weight: 1  
  lambda: 0.9  
  normalize: true  
  int8_mask: true  
dtype: bfloat16  
tokenizer_source: base  
name: Qwen2.5-14B-YOYO-della4
```
This approach yielded four variants:  
- `Qwen2.5-14B-YOYO-della1`  
- `Qwen2.5-14B-YOYO-della2`  
- `Qwen2.5-14B-YOYO-della3`  
- `Qwen2.5-14B-YOYO-della4`

## Base Model:
To enhance base model roleplay and creative writing capabilities, I applied the same strategy:
```yaml
models:  
  - model: EVA-UNIT-01/EVA-Qwen2.5-14B-v0.2  
    parameters:  
      density: 1  
      weight: 1  
      lambda: 0.9  
merge_method: della  
base_model: Qwen/Qwen2.5-14B  
parameters:  
  density: 1  
  weight: 1  
  lambda: 0.9  
  normalize: true  
  int8_mask: true  
dtype: bfloat16  
tokenizer_source: base  
name: EVA-Qwen2.5-14B-base
```
Next, I extended the context length using the SCE method:
```yaml
merge_method: sce  
models:  
  - model: EVA-Qwen2.5-14B-base  
base_model: Qwen/Qwen2.5-14B-Instruct-1M  
parameters:  
  select_topk: 1  
dtype: bfloat16  
tokenizer_source: base  
normalize: true  
int8_mask: true  
name: Qwen2.5-14B-pro
```
## Final Merge Step:
```yaml
merge_method: model_stock  
base_model: Qwen2.5-14B-pro  
models:  
  - model: Qwen2.5-14B-YOYO-della1  
  - model: Qwen2.5-14B-YOYO-della2  
  - model: Qwen2.5-14B-YOYO-della3  
  - model: Qwen2.5-14B-YOYO-della4  
dtype: bfloat16  
tokenizer_source: base  
int8_mask: true  
normalize: true  
name: Qwen2.5-14B-1M-YOYO-V3
```
I hope this helps!

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/YOYO-AI__Qwen2.5-14B-1M-YOYO-V3-details)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |42.56|
|IFEval (0-Shot)    |83.98|
|BBH (3-Shot)       |49.47|
|MATH Lvl 5 (4-Shot)|53.55|
|GPQA (0-shot)      |10.51|
|MuSR (0-shot)      |11.10|
|MMLU-PRO (5-shot)  |46.74|