Update README.md
Browse files
README.md
CHANGED
@@ -13,6 +13,101 @@ base_model:
|
|
13 |
pipeline_tag: text-generation
|
14 |
tags:
|
15 |
- merge
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
---
|
17 |
|
18 |

|
@@ -46,7 +141,18 @@ name: Qwen2.5-14B-YOYO-latest-V2
|
|
46 |
Although the uncontrollable output issue has been addressed, the model still lacks stability.
|
47 |
|
48 |
Through practical experimentation, I found that first merging **"high-divergence"** models (significantly different from the base) into **"low-divergence"** models (closer to the base) using the [DELLA](https://arxiv.org/abs/2406.11617) method, then applying the [Model Stock](https://arxiv.org/abs/2403.19522) method, ultimately produces a model that is not only more stable but also achieves better performance.
|
|
|
|
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
## Key models used:
|
51 |
*1. Low-divergence, high-performance models:*
|
52 |
|
@@ -191,4 +297,4 @@ int8_mask: true
|
|
191 |
normalize: true
|
192 |
name: Qwen2.5-14B-1M-YOYO-V3
|
193 |
```
|
194 |
-
I hope this helps!
|
|
|
13 |
pipeline_tag: text-generation
|
14 |
tags:
|
15 |
- merge
|
16 |
+
model-index:
|
17 |
+
- name: Qwen2.5-14B-1M-YOYO-V3
|
18 |
+
results:
|
19 |
+
- task:
|
20 |
+
type: text-generation
|
21 |
+
name: Text Generation
|
22 |
+
dataset:
|
23 |
+
name: IFEval (0-Shot)
|
24 |
+
type: HuggingFaceH4/ifeval
|
25 |
+
args:
|
26 |
+
num_few_shot: 0
|
27 |
+
metrics:
|
28 |
+
- type: inst_level_strict_acc and prompt_level_strict_acc
|
29 |
+
value: 83.98
|
30 |
+
name: strict accuracy
|
31 |
+
source:
|
32 |
+
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=YOYO-AI/Qwen2.5-14B-1M-YOYO-V3
|
33 |
+
name: Open LLM Leaderboard
|
34 |
+
- task:
|
35 |
+
type: text-generation
|
36 |
+
name: Text Generation
|
37 |
+
dataset:
|
38 |
+
name: BBH (3-Shot)
|
39 |
+
type: BBH
|
40 |
+
args:
|
41 |
+
num_few_shot: 3
|
42 |
+
metrics:
|
43 |
+
- type: acc_norm
|
44 |
+
value: 49.47
|
45 |
+
name: normalized accuracy
|
46 |
+
source:
|
47 |
+
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=YOYO-AI/Qwen2.5-14B-1M-YOYO-V3
|
48 |
+
name: Open LLM Leaderboard
|
49 |
+
- task:
|
50 |
+
type: text-generation
|
51 |
+
name: Text Generation
|
52 |
+
dataset:
|
53 |
+
name: MATH Lvl 5 (4-Shot)
|
54 |
+
type: hendrycks/competition_math
|
55 |
+
args:
|
56 |
+
num_few_shot: 4
|
57 |
+
metrics:
|
58 |
+
- type: exact_match
|
59 |
+
value: 53.55
|
60 |
+
name: exact match
|
61 |
+
source:
|
62 |
+
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=YOYO-AI/Qwen2.5-14B-1M-YOYO-V3
|
63 |
+
name: Open LLM Leaderboard
|
64 |
+
- task:
|
65 |
+
type: text-generation
|
66 |
+
name: Text Generation
|
67 |
+
dataset:
|
68 |
+
name: GPQA (0-shot)
|
69 |
+
type: Idavidrein/gpqa
|
70 |
+
args:
|
71 |
+
num_few_shot: 0
|
72 |
+
metrics:
|
73 |
+
- type: acc_norm
|
74 |
+
value: 10.51
|
75 |
+
name: acc_norm
|
76 |
+
source:
|
77 |
+
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=YOYO-AI/Qwen2.5-14B-1M-YOYO-V3
|
78 |
+
name: Open LLM Leaderboard
|
79 |
+
- task:
|
80 |
+
type: text-generation
|
81 |
+
name: Text Generation
|
82 |
+
dataset:
|
83 |
+
name: MuSR (0-shot)
|
84 |
+
type: TAUR-Lab/MuSR
|
85 |
+
args:
|
86 |
+
num_few_shot: 0
|
87 |
+
metrics:
|
88 |
+
- type: acc_norm
|
89 |
+
value: 11.10
|
90 |
+
name: acc_norm
|
91 |
+
source:
|
92 |
+
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=YOYO-AI/Qwen2.5-14B-1M-YOYO-V3
|
93 |
+
name: Open LLM Leaderboard
|
94 |
+
- task:
|
95 |
+
type: text-generation
|
96 |
+
name: Text Generation
|
97 |
+
dataset:
|
98 |
+
name: MMLU-PRO (5-shot)
|
99 |
+
type: TIGER-Lab/MMLU-Pro
|
100 |
+
config: main
|
101 |
+
split: test
|
102 |
+
args:
|
103 |
+
num_few_shot: 5
|
104 |
+
metrics:
|
105 |
+
- type: acc
|
106 |
+
value: 46.74
|
107 |
+
name: accuracy
|
108 |
+
source:
|
109 |
+
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=YOYO-AI/Qwen2.5-14B-1M-YOYO-V3
|
110 |
+
name: Open LLM Leaderboard
|
111 |
---
|
112 |
|
113 |

|
|
|
141 |
Although the uncontrollable output issue has been addressed, the model still lacks stability.
|
142 |
|
143 |
Through practical experimentation, I found that first merging **"high-divergence"** models (significantly different from the base) into **"low-divergence"** models (closer to the base) using the [DELLA](https://arxiv.org/abs/2406.11617) method, then applying the [Model Stock](https://arxiv.org/abs/2403.19522) method, ultimately produces a model that is not only more stable but also achieves better performance.
|
144 |
+
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
|
145 |
+
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Replete-AI__Replete-LLM-V2.5-Qwen-14b)
|
146 |
|
147 |
+
| Metric |Value|
|
148 |
+
|-------------------|----:|
|
149 |
+
|Avg. |42.56|
|
150 |
+
|IFEval (0-Shot) |83.98|
|
151 |
+
|BBH (3-Shot) |49.47|
|
152 |
+
|MATH Lvl 5 (4-Shot)|53.55|
|
153 |
+
|GPQA (0-shot) |10.51|
|
154 |
+
|MuSR (0-shot) |11.10|
|
155 |
+
|MMLU-PRO (5-shot) |46.74|
|
156 |
## Key models used:
|
157 |
*1. Low-divergence, high-performance models:*
|
158 |
|
|
|
297 |
normalize: true
|
298 |
name: Qwen2.5-14B-1M-YOYO-V3
|
299 |
```
|
300 |
+
I hope this helps!
|