|
--- |
|
tags: |
|
- autotrain |
|
- text-classification |
|
widget: |
|
- text: I love AutoTrain |
|
datasets: |
|
- dair-ai/emotion |
|
license: mit |
|
language: |
|
- en |
|
pipeline_tag: text-classification |
|
base_model: |
|
- google-bert/bert-base-uncased |
|
--- |
|
|
|
# Model Trained Using AutoTrain |
|
|
|
- Problem type: Text Classification |
|
|
|
# Request Example |
|
```Python |
|
from transformers import pipeline |
|
|
|
# Ensure the model and tokenizer are loaded on the GPU by setting device=0 |
|
emotion_classifier = pipeline( |
|
"text-classification", |
|
model="XuehangCang/Emotion-Classification", |
|
# device=0 # Use the first GPU device |
|
) |
|
|
|
texts = [ |
|
"I'm so happy today!", |
|
"This is really sad.", |
|
"I'm a bit nervous about what's going to happen.", |
|
"This news makes me angry." |
|
] |
|
|
|
for text in texts: |
|
result = emotion_classifier(text) |
|
print(f"Text: {text}") |
|
print(f"Emotion classification result: {result}\n") |
|
|
|
""" |
|
Device set to use cpu |
|
Text: I'm so happy today! |
|
Emotion classification result: [{'label': 'joy', 'score': 0.9994311928749084}] |
|
|
|
Text: This is really sad. |
|
Emotion classification result: [{'label': 'sadness', 'score': 0.9989039897918701}] |
|
|
|
Text: I'm a bit nervous about what's going to happen. |
|
Emotion classification result: [{'label': 'fear', 'score': 0.998763918876648}] |
|
|
|
Text: This news makes me angry. |
|
Emotion classification result: [{'label': 'anger', 'score': 0.9977891445159912}] |
|
""" |
|
``` |
|
|
|
## Validation Metrics |
|
loss: 0.13341853022575378 |
|
|
|
f1_macro: 0.9169826832623412 |
|
|
|
f1_micro: 0.943 |
|
|
|
f1_weighted: 0.9427985114313238 |
|
|
|
precision_macro: 0.9227534317185495 |
|
|
|
precision_micro: 0.943 |
|
|
|
precision_weighted: 0.9430912986498113 |
|
|
|
recall_macro: 0.9119580961776227 |
|
|
|
recall_micro: 0.943 |
|
|
|
recall_weighted: 0.943 |
|
|
|
accuracy: 0.943 |
|
|
|
|
|
## License |
|
|
|
CC-0 |